留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FDA对比幅法单脉冲测向的角度欺骗

王博 谢军伟 葛佳昂 张晶

王博, 谢军伟, 葛佳昂, 等 . FDA对比幅法单脉冲测向的角度欺骗[J]. 北京航空航天大学学报, 2020, 46(3): 643-650. doi: 10.13700/j.bh.1001-5965.2019.0378
引用本文: 王博, 谢军伟, 葛佳昂, 等 . FDA对比幅法单脉冲测向的角度欺骗[J]. 北京航空航天大学学报, 2020, 46(3): 643-650. doi: 10.13700/j.bh.1001-5965.2019.0378
WANG Bo, XIE Junwei, GE Jiaang, et al. Angle deception effect of FDA on amplitude comparison direction finding system with single pulse[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 643-650. doi: 10.13700/j.bh.1001-5965.2019.0378(in Chinese)
Citation: WANG Bo, XIE Junwei, GE Jiaang, et al. Angle deception effect of FDA on amplitude comparison direction finding system with single pulse[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 643-650. doi: 10.13700/j.bh.1001-5965.2019.0378(in Chinese)

FDA对比幅法单脉冲测向的角度欺骗

doi: 10.13700/j.bh.1001-5965.2019.0378
基金项目: 

国家自然科学基金 61503408

详细信息
    作者简介:

    王博  男, 博士研究生。主要研究方向:频率分集阵列雷达信号处理及干扰抑制方法

    谢军伟  男, 博士, 教授, 博士生导师。主要研究方向:隐身与反隐身、雷达电子战

    通讯作者:

    谢军伟, E-mail: xjw_xjw_123@163.com

  • 中图分类号: TN95

Angle deception effect of FDA on amplitude comparison direction finding system with single pulse

Funds: 

National Natural Science Foundation of China 61503408

More Information
  • 摘要:

    基于相控阵的干扰机在对目标雷达施放干扰的过程中,其辐射信号会被敌方的无源探测雷达所捕获。基于频率分集阵列(FDA)干扰机结构,提出一种针对敌方相邻天线比幅单脉冲测向系统的角度欺骗方法。首先,在建立FDA模型的基础上计算出FDA雷达的半功率波束宽度。然后,将半功率波束宽度代入相邻天线比幅单脉冲测向系统,通过仿真,系统分析了FDA干扰机对比幅法无源测向系统的角度欺骗效果及误差影响。仿真结果表明,远场条件下,FDA干扰机对测向系统具有良好的角度欺骗效果。

     

  • 图 1  FDA基本结构[1]

    Figure 1.  Configuration of FDA [1]

    图 2  相邻天线的振幅方向图[14]

    Figure 2.  Amplitude pattern of adjacent antennas[14]

    图 3  FDA干扰机与测向系统的位置关系

    Figure 3.  Relationship of position between FDA jammer and direction finding system

    图 4  Δ对Δθ的影响(Δf=3kHz)

    Figure 4.  Impact of Δ on Δθf=3kHz)

    图 5  Δ对Δθ的影响(Δf=5kHz)

    Figure 5.  Impact of Δ on Δθf=5kHz)

    图 6  θF对Δθ的影响(Δf=3kHz,N=10)

    Figure 6.  Impact of θF on Δθf=3kHz, N=10)

    图 7  d对Δθ的影响(Δf=3kHz,N=10)

    Figure 7.  Impact of d on Δθf=3kHz, N=10)

    图 8  f0对Δθ的影响(Δf=3kHz,N=10)

    Figure 8.  Impact of f0 on Δθf=3kHz, N=10)

    图 9  t对Δθ的影响(Δf=3kHz,N=10)

    Figure 9.  Impact of t on Δθf=3kHz, N=10)

    图 10  半功率波束宽度变化引起的测向误差

    Figure 10.  Direction finding error caused by half-power beamwidth variation

    图 11  天线张角变化引起的测向误差

    Figure 11.  Direction finding error caused by antenna angle variation

    图 12  通道失衡引起的测向误差

    Figure 12.  Direction finding error caused by channel imbalance variation

    图 13  不同信噪比引起的系统测向随机误差

    Figure 13.  Random error of system direction finding caused by SNR variation

    表  1  不同功率比值、FDA阵元数目、频偏增量取值下的D

    Table  1.   Value of D under different power ratios, numbers of FDA array element and frequency deviation increment

    N Δ/dB D/km
    Δf=1kHz Δf=3kHz Δf=5kHz
    2 1 3.35 1.21 1.73
    3 0.41 6.79 15.26
    5 4.16 14.53 26.97
    5 1 4.68 3.35 1.21
    3 3.59 0.42 6.81
    5 2.51 4.18 14.55
    10 1 4.94 3.88 2.01
    3 4.39 1.19 4.43
    5 3.84 1.51 10.75
    下载: 导出CSV

    表  2  不同功率比值、θF取值下的D

    Table  2.   Value of D under different power ratios and different values of θF

    Δ/dB D/km
    θF=0° θF=10° θF=20° θF=30°
    1 14.37 11.03 7.53 3.88
    3 12.46 9.01 5.27 1.19
    5 10.52 6.96 2.99 1.51
    下载: 导出CSV

    表  3  不同功率比值、阵元间距取值下的D

    Table  3.   Value of D under different power ratios and different distances between array elements

    Δ/dB D/km
    d=0.10m d=0.11m d=0.12m d=0.13m d=0.14m d=0.15m
    1 2.20 2.72 3.12 3.43 3.68 3.88
    3 3.87 2.29 1.09 0.15 0.59 1.19
    5 9.84 7.27 5.29 3.74 2.51 1.51
    下载: 导出CSV

    表  4  不同功率比值、载波频率取值下的D

    Table  4.   Value of D under different power ratios and different carrier frequency

    Δ/dB D/km
    f0=1GHz f0=2GHz f0=3GHz f0=4GHz f0=5GHz f0=6GHz
    1 3.88 4.89 5.07 5.14 5.17 5.18
    3 1.19 4.22 4.77 4.97 5.06 5.11
    5 1.51 3.54 4.48 4.80 4.95 5.04
    下载: 导出CSV

    表  5  不同时间取值下的D

    Table  5.   Value of D under different time

    Δ/dB D/km
    t=0s t=0.1s t=0.2s t=0.3s t=0.4s
    1 3.88 3.72 3.68 3.63 3.58
    3 1.19 1.10 1.02 0.83 0.65
    5 1.51 1.43 1.24 1.12 0.91
    下载: 导出CSV
  • [1] ANTONIK P, WICKS W C, GRIFFITHS H D, et al.Frequency diverse array radars[C]//Proceedings of the IEEE Radar Conference.Piscataway, NJ: IEEE Press, 2006: 470-475.
    [2] ANTONIK P.An investigation of a frequency diverse array[D]. London: University College London, 2009: 3-4.
    [3] WICKS M C, ANTONIK P.Frequency diverse array with independent modulation of frequency, amplitude, and phase: 7, 319, 427[P]. 2008-01-15.
    [4] WANG W Q.Frequency diverse array antenna:New opportunities[J]. IEEE Antennas and Propagation Magazine, 2015, 5(2):145-152. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235433877/
    [5] 王博, 谢军伟, 张晶, 等.基于非线性频偏的频控阵波束控制研究[J].北京理工大学学报, 2019, 39(3):311-319. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201903014

    WANG B, XIE J W, ZHANG J, et al.Study of frequency diverse array beam control based on nonlinear frequency offset[J]. Transactions of Beijing Institute of Technology, 2019, 39(3):311-319(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201903014
    [6] ABDALLA A, ABDALLA H, RAMADAN M, et al.Overview of frequency diverse array in radar ECCM applications[C]//International Conference on Communication, Control, Computing, and Electronic Engineering.Piscataway, NJ: IEEE Press, 2017: 1-9.
    [7] XU J W, LIAO G S, ZHU S Q, et al.Deceptive jamming suppression with frequency diverse MIMO radar[J]. Elsevier Journal of Signal Processing, 2015, 113(8):9-17. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201805006
    [8] LAN L, LIAO G S, XU J W.A method to suppress the main-beam deceptive jamming in FDA-MIMO radar with random polyphase codes[C]//2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop(SAM).Piscataway, NJ: IEEE Press, 2018: 509-513.
    [9] 王文钦, 陈慧, 郑植, 等.频控阵雷达技术及其应用研究进展[J].雷达学报, 2018, 7(2):153-166. http://d.old.wanfangdata.com.cn/Periodical/ldxb201802001

    WANG W Q, CHEN H, ZHENG Z, et al.Advances on frequency diverse array radar and its applications[J]. Journal of Radars, 2018, 7(2):153-166(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ldxb201802001
    [10] 许京伟, 朱圣棋, 廖桂生, 等.频率分集阵雷达技术探讨[J].雷达学报, 2018, 7(2):167-182. http://d.old.wanfangdata.com.cn/Periodical/ldxb201802002

    XU J W, ZHU S Q, LIAO G S, et al.An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2):167-182(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ldxb201802002
    [11] 陈小龙, 陈宝欣, 黄勇, 等.频控阵雷达空距频聚焦信号处理方法[J].雷达学报, 2018, 7(2):183-193. http://d.old.wanfangdata.com.cn/Periodical/ldxb201802003

    CHEN X L, CHEN B X, HUANG Y, et al.Frequency diverse array radar signal processing via space-range-Doppler focus(SRDF)method[J]. Journal of Radars, 2018, 7(2):183-193(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ldxb201802003
    [12] WANG W Q, CAI J Y.A technique for jamming bi-and multistatic SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1):80-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=608f42857c7c8a1ac784ecb562cc673a
    [13] 胡祺勇, 谢军伟, 张昭建.频率分集阵列在角度欺骗中的应用分析[J].空军工程大学学报, 2016, 10(6):41-47. doi: 10.3969/j.issn.1009-3516.2016.06.008

    HU Q Y, XIE J W, ZHANG Z J.Application and analysis of frequency diverse array used in angle deception[J]. Journal of Force Engineering University, 2016, 10(6):41-47(in Chinese). doi: 10.3969/j.issn.1009-3516.2016.06.008
    [14] 张永顺, 童宁宁, 赵国庆.雷达电子战原理[M].北京:国防工业出版社, 2010:66-67.

    ZHANG Y S, TONG N N, ZHAO G Q.Principles of electronic warfare[M]. Beijing:National Defense Industry Press, 2010:66-67(in Chinese).
    [15] RICHARDS M.雷达信号处理基础[M].刑孟道, 王彤, 李真芳, 等, 译.2版.北京: 电子工业出版社, 2008: 122-126.
    [22] RICHARDS M.Fundamentals of radar signal processing[M]. XING M D, WANG T, LI Z F, et al, translated.2nd ed.Beijing: Publishing House of Electronics Industry, 2008: 122-126(in Chinese).
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  669
  • HTML全文浏览量:  117
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-09
  • 录用日期:  2019-10-18
  • 网络出版日期:  2020-03-20

目录

    /

    返回文章
    返回
    常见问答