留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速滑翔飞行器地形匹配辅助导航方法研究

鲜勇 任乐亮 杨子成 张大巧 李杰

鲜勇, 任乐亮, 杨子成, 等 . 高超声速滑翔飞行器地形匹配辅助导航方法研究[J]. 北京航空航天大学学报, 2020, 46(4): 691-702. doi: 10.13700/j.bh.1001-5965.2019.0310
引用本文: 鲜勇, 任乐亮, 杨子成, 等 . 高超声速滑翔飞行器地形匹配辅助导航方法研究[J]. 北京航空航天大学学报, 2020, 46(4): 691-702. doi: 10.13700/j.bh.1001-5965.2019.0310
XIAN Yong, REN Leliang, YANG Zicheng, et al. Terrain match aided navigation method of hypersonic glide vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 691-702. doi: 10.13700/j.bh.1001-5965.2019.0310(in Chinese)
Citation: XIAN Yong, REN Leliang, YANG Zicheng, et al. Terrain match aided navigation method of hypersonic glide vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 691-702. doi: 10.13700/j.bh.1001-5965.2019.0310(in Chinese)

高超声速滑翔飞行器地形匹配辅助导航方法研究

doi: 10.13700/j.bh.1001-5965.2019.0310
详细信息
    作者简介:

    鲜勇 男,博士,教授,博士生导师。主要研究方向:飞行器设计、制导理论等

    任乐亮 男,硕士研究生。主要研究方向:飞行器导航与设计

    通讯作者:

    鲜勇. E-mail:xy603xy@163.com

  • 中图分类号: V249.32

Terrain match aided navigation method of hypersonic glide vehicle

More Information
  • 摘要:

    高超声速滑翔飞行器滑翔飞行高度在30 km以上,大气极其稀薄,传统采用气压高度计的地形匹配辅助导航方式将无法正常工作。为实现高精度地形匹配,在分析匹配算法对地形常值误差不敏感的基础上,详细论证了基于惯性系统解算绝对高度方案,并对比分析了将短时滑翔段弹道简化为等高飞行方案。在捷联惯性导航系统(SINS)误差模型基础上,结合高度通道方块图,通过拉普拉斯变换,建立了惯性系统高度通道短时稳定性解析模型,并以CAV-H为研究对象建立数值仿真环境。仿真结果表明,解析模型精度较高,基于SINS解算绝对高度能够满足地形匹配辅助导航系统精度要求,优于气压高度计正常工作时的精度。

     

  • 图 1  高度h处压强差1Pa对应的高度差

    Figure 1.  Height difference corresponding to pressure difference of 1Pa at h height

    图 2  不同升阻比下δh随时间变化曲线

    Figure 2.  Variation curves of δh with time under different lift-drag ratios

    图 3  不同初始高度下δh随时间变化曲线

    Figure 3.  Variation curves of δh with time under different initial heights

    图 4  较小初始速度偏差下δh随时间变化曲线

    Figure 4.  Variation curves of δh with time under smaller initial velocity deviation

    图 5  较大初始速度偏差下δh随时间变化曲线

    Figure 5.  Variation curves of δh with time under larger initial velocity deviation

    图 6  不同初始高度偏差下δh随时间变化曲线

    Figure 6.  Variation curves of δh with time under different initial height deviations

    图 7  不同初始速度倾角偏差下δh随时间变化曲线

    Figure 7.  Variation curves of δh with time under different initial flight path angle deviations

    图 8  本文定义的m坐标系

    Figure 8.  m coordinate system defined in this paper

    图 9  高度通道方块图[7]

    Figure 9.  Block diagram of height channels[7]

    图 10  不同ΔT下δh随时间t0的变化曲线

    Figure 10.  Variation curves of δh with time t0 under different ΔT

    图 11  不同加速度计误差系数偏差下δh随时间t0的变化曲线

    Figure 11.  Variation curves of δh with time t0 with different deviations of accelerometer error coefficient

    图 12  不同ϕm0下δh随时间t0的变化曲线

    Figure 12.  Variation curves of δh with time t0 under different ϕm0

    图 13  δh1和δh2随时间变化曲线

    Figure 13.  Variation curves of δh1and δh2 with time

    图 14  过载和高度随时间变化曲线

    Figure 14.  Variation curves of overload and height with time

    图 15  δh随时间变化曲线

    Figure 15.  Variation curves of δh with time

    表  1  不同升阻比下2000s时的δh

    Table  1.   δh at 2000s with different lift-drag ratios

    K δh/m
    2.30 -32.78
    2.45 -24.03
    2.60 -19.07
    2.75 -15.88
    2.90 -13.65
    3.05 -12.00
    3.20 -10.74
    3.35 -9.73
    3.50 -8.91
    下载: 导出CSV

    表  2  不同初始高度下2000s时的δh

    Table  2.   δh at 2000s with different initial heights

    H0/km δh/m
    50 -64.64
    51 -39.16
    52 -27.92
    53 -21.63
    54 -17.64
    55 -14.91
    60 -8.72
    70 -5.86
    80 -5.31
    下载: 导出CSV

    表  3  ΔT=1s时δh的大小

    Table  3.   Value of δh when ΔT=1s

    t0/s δh/m
    1 000 5.10
    1 300 8.80
    1 500 12.57
    1 800 21.36
    2 000 30.36
    下载: 导出CSV

    表  4  不同加速度计误差系数偏差下t0=2000s时δh的大小

    Table  4.   Value of δh when t0=2000s with different deviations of accelerometer error coefficient

    误差系数偏差 δh/m
    0.3×10-5 0.65
    1.5×10-5 3.23
    3×10-5 6.46
    6×10-5 12.92
    9×10-5 19.38
    12×10-5 25.84
    15×10-5 32.30
    30×10-5 64.60
    下载: 导出CSV

    表  5  不同ϕm0t0=2000s时δh的大小

    Table  5.   Value of δh when t0=2000s with different ϕm0

    ϕm0/(°) δh/m
    0 16.80
    5 17.79
    10 18.13
    15 18.68
    20 19.16
    25 19.56
    30 19.87
    35 20.09
    40 20.23
    45 20.28
    下载: 导出CSV

    表  6  工具误差系数精度

    Table  6.   Instrumental error coefficient accuracy

    误差系数偏差 系数精度
    ΔD0x/((°)·h-1) 0.01
    ΔD0y/((°)·h-1) 0.01
    ΔD0z/((°)·h-1) 0.01
    ΔK0x/g0 3×10-5
    ΔK0y/g0 3×10-5
    ΔK0z/g0 3×10-5
    ΔK1x 3×10-5
    ΔK1y 3×10-5
    ΔK1z 3×10-5
    下载: 导出CSV
  • [1] 鲜勇, 李邦杰, 雷刚, 等.弹道导弹精度分析方法[M].长沙:国防科技大学出版社, 2012:1.

    XIAN Y, LI B J, LEI G, et al.Ballistic missile precision analysis method[M].Changsha:National University of Defense Technology Press, 2012:1(in Chinese).
    [2] 鲜勇, 李刚, 苏娟, 等.导弹制导理论与技术[M].北京:国防工业出版社, 2015:11.

    XIAN Y, LI G, SU J, et al.Missile guidance theory and technology[M].Beijing:National Defense Industry Press, 2015:11(in Chinese).
    [3] 李雄伟, 刘建业, 康国华.TERCOM地形高程辅助导航系统发展及应用研究[J].中国惯性技术学报, 2006, 14(1):34-40. http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb200601008

    LI X W, LIU J Y, KANG G H.Development and application of TERCOM elevation-aided navigation system[J].Journal of Chinese Inertial Technology, 2006, 14(1):34-40(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb200601008
    [4] 张聘义, 强涛, 翁晓东.巡航导弹现状与发展趋势[J].红外与激光工程, 2006, 35(z1):28-34. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc2006z1005

    ZHANG P Y, QIANG T, WENG X D.Status quo and trend of cruise missile[J].Infrared and Laser Engineering, 2006, 35(z1):28-34(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hwyjggc2006z1005
    [5] 戴晨曦, 程向红, 陈红梅, 等.天文观测角辅助的高超声速飞行器传递对准方法[J].中国惯性技术学报, 2015, 23(4):446-450. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggxjsxb201504006

    DAI C X, CHENG X H, CHEN H M, et al.Transfer alignment approach of hypersonic vehicle aided by celestial angle[J].Journal of Chinese Inertial Technology, 2015, 23(4):446-450(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggxjsxb201504006
    [6] 肖存英.临近空间大气动力学特性研究[D].北京: 中国科学院空间科学与应用研究中心, 2009.

    XIAO C Y.Researches on the dynamics of the atmosphere in the near space[D].Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences, 2009(in Chinese).
    [7] 秦永元.惯性导航[M].2版.北京:科学出版社, 2014:190-191.

    QIN Y Y.Inertial navigation[M].2nd ed.Beijing:Science Press, 2014:190-191(in Chinese).
    [8] 吴旋.高性能惯性/大气高度组合及其动态虚拟仿真技术[D].南京: 南京航空航天大学, 2014.

    WU X.High-performance INS/ADS and high dynamic of virtual simulation technology[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
    [9] 臧新乐.捷联惯性导航系统误差阻尼技术[D].哈尔滨: 哈尔滨工程大学, 2017.

    ZANG X L.Error damping technique of strapdown inertial navigation system[D].Harbin: Harbin Engineering University, 2017(in Chinese).
    [10] 徐剑, 毕笃彦, 袁建国.一种无气压高度信息辅助的地形导航系统[J].电光与控制, 2005, 12(6):46-49. http://d.old.wanfangdata.com.cn/Periodical/dgykz200506013

    XU J, BI D Y, YUANG J G.A terrain navigation system independent of barometer information[J].Electronics Optics & Control, 2005, 12(6):46-49(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dgykz200506013
    [11] 谢愈, 刘鲁华, 汤国建, 等.多约束条件下高超声速滑翔飞行器轨迹优化[J].宇航学报, 2011, 32(12):2499-2504. http://d.old.wanfangdata.com.cn/Periodical/yhxb201112005

    XIE Y, LIU L H, TANG G J, et al.Trajectory optimization for hypersonic glide vehicle with multi-constraints[J].Journal of Astronautics, 2011, 32(12):2499-2504(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yhxb201112005
    [12] 谢愈, 潘亮, 谷学强, 等.高超声速飞行器多目标复杂约束滑翔弹道优化[J].国防科技大学学报, 2017, 39(2):9-17. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201702002

    XIE Y, PAN L, GU X Q, et al.Gliding trajectory optimization with multiple objectives and complicated constraints for hypersonic vehicles[J].Journal of National University of Defense Technology, 2017, 39(2):9-17(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201702002
    [13] 胡锦川, 张晶, 陈万春.高超声速飞行器平稳滑翔弹道解析解及其应用[J].北京航空航天大学学报, 2016, 42(5):961-968. doi: 10.13700/j.bh.1001-5965.2015.0330

    HU J C, ZHANG J, CHEN W C.Analytical solutions of steady glide trajectory for hypersonic vehicle and planning application[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):961-968(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0330
    [14] 李广华, 张洪波, 汤国建.高超声速滑翔飞行器典型弹道特性分析[J].宇航学报, 2015, 36(4):397-403. http://d.old.wanfangdata.com.cn/Periodical/yhxb201504005

    LI G H, ZHANG H B, TANG G J.Typical trajectory characteristics of hypersonic glide vehicle[J].Journal of Astronautics, 2015, 36(4):397-403(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yhxb201504005
    [15] FERREIRA L O.Nonlinear dynamics and stability of hypersonic reentry vehicles[D].Michigan: University of Michigan, 1995.
    [16] 李邦杰, 王明海.滑翔式远程导弹滑翔段弹道研究[J].宇航学报, 2009, 30(6):2122-2126. http://d.old.wanfangdata.com.cn/Periodical/yhxb200906012

    LI B J, WANG M H.Research on glide trajectory of long range glide missile[J].Journal of Astronautics, 2009, 30(6):2122-2126(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yhxb200906012
    [17] 黄帅.低成本微小型巡飞弹组合导航技术研究[D].长沙: 国防科学技术大学, 2016.

    HUANG S.Research on integrated navigation technology for low-cost miniature loitering missile[D].Changsha: National University of Defense Technology, 2016(in Chinese).
    [18] 孙健.GPS和高精度气压高度表的组合导航定位技术研究[D].南京: 南京航空航天大学, 2008.

    SUN J.Research on GPS and high precision baro-altimeter integrated navigation and positioning technology[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2008(in Chinese).
    [19] 白浪, 雷旭升, 盛蔚, 等.基于小波滤波的无人旋翼机高度信息融合[J].北京航空航天大学学报, 2012, 38(5):659-664. https://bhxb.buaa.edu.cn/CN/Y2012/V38/I5/659

    BAI L, LEI X S, SHENG W, et al.Method of small unmanned aerial rotorcraft altitude information fusion based on wavelet filter[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5):659-664(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2012/V38/I5/659
    [20] 李本亮.基于CAN总线的气压高度表研制[D].西安: 西安电子科技大学, 2015.

    LI B L.Design of atmospheric pressure altimeter based on CAN bus[D].Xi'an: Xidian University, 2015(in Chinese).
    [21] Bosch Sensortec. BMP180 digital pressure sensor data sheet: BST-BMP-180-DS000-12[R].[S.l.]: Bosch Sensortec, 2015.
    [22] Bosch Sensortec.BMP388 digital pressure sensor data sheet: BST-BMP-388-DS001-01[R].[S.l.]: Bosch Sensortec, 2018.
    [23] 张二国, 鲁物婷, 李伟, 等.PTB210气压传感器检定结果的不确定度分析[J].陕西气象, 2015(1):39-40. http://d.old.wanfangdata.com.cn/Periodical/xdhny201801031

    ZHANG E G, LU W T, LI W, et al.Uncertainty analysis of the detection results of PTB210 altimeter sensor[J].Journal of Shaanxi Meteorology, 2015(1):39-40(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xdhny201801031
    [24] MASSÉ F, BOURKE A K, CHARDONNENS J, et al.Suitability of commercial barometric pressure sensors to distinguish sitting and standing activities for wearable monitoring[J].Medical Engineering & Physics, 2014, 36(6):739-744. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69268d656aff65342b984c27e1a28721
    [25] 郝振海, 黄圣国.高精度气压高度表的研制[J].南京航空航天大学学报, 2009, 41(1):134-138. http://d.old.wanfangdata.com.cn/Periodical/njhkht200901027

    HAO Z H, HUANG S G.Development of high precision barometric altimeter[J].Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(1):134-138(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/njhkht200901027
    [26] 杨晓斌.用于飞行器导航的地形匹配方法研究[D].上海: 同济大学, 2004.

    YANG X B.The study of the terrain-matching method based on aircraft navigation[D].Shanghai: Tongji University, 2004(in Chinese).
    [27] 鲜勇, 李刚.弹道导弹捷联惯性导航系统误差传播模型[J].兵工学报, 2009, 30(3):338-341. http://d.old.wanfangdata.com.cn/Periodical/bgxb200903016

    XIAN Y, LI G.Rsearch on SINS error transfer model of ballistic missile[J].Acta Armamentarii, 2009, 30(3):338-341(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bgxb200903016
    [28] 张毅, 肖龙旭, 王顺宏.弹道导弹弹道学[M].长沙:国防科技大学出版社, 1999:29.

    ZHANG Y, XIAO L X, WANG S H.Missile ballistics[M].Changsha:National University of Defense Technology Press, 1999:29(in Chinese)
    [29] 周邦大.基于SINS/BDS/CNS的高超声速飞行器组合导航研究[D].长沙: 国防科学技术大学, 2010.

    ZHOU B D.Research on integrated navigation technology for hypersonic vehicle[D].Changsha: National University of Defense Technology, 2010(in Chinese).
    [30] PHILLIPS T H.A common aero vehicle (CAV) model, description, and employment guide[R].Arlington: Schafer Cooperation for AFRL and AFSPC, 2003.
    [31] 范娜.地形辅助导航系统的匹配算法研究[D].哈尔滨: 哈尔滨工程大学, 2007.

    FAN N.Research on matching algorithm of terrain aided navigation system[D].Harbin: Harbin Engineering University, 2007(in Chinese).
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  807
  • HTML全文浏览量:  203
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-17
  • 录用日期:  2019-09-27
  • 网络出版日期:  2020-04-20

目录

    /

    返回文章
    返回
    常见问答