留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火卫一周期准卫星轨道及入轨分析

吴晓杰 王悦 徐世杰

吴晓杰, 王悦, 徐世杰等 . 火卫一周期准卫星轨道及入轨分析[J]. 北京航空航天大学学报, 2020, 46(6): 1133-1141. doi: 10.13700/j.bh.1001-5965.2019.0391
引用本文: 吴晓杰, 王悦, 徐世杰等 . 火卫一周期准卫星轨道及入轨分析[J]. 北京航空航天大学学报, 2020, 46(6): 1133-1141. doi: 10.13700/j.bh.1001-5965.2019.0391
WU Xiaojie, WANG Yue, XU Shijieet al. Periodic quasi-satellite orbits around Phobos and their injections[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1133-1141. doi: 10.13700/j.bh.1001-5965.2019.0391(in Chinese)
Citation: WU Xiaojie, WANG Yue, XU Shijieet al. Periodic quasi-satellite orbits around Phobos and their injections[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1133-1141. doi: 10.13700/j.bh.1001-5965.2019.0391(in Chinese)

火卫一周期准卫星轨道及入轨分析

doi: 10.13700/j.bh.1001-5965.2019.0391
基金项目: 

国家自然科学基金 11872007

国家自然科学基金 11432001

国家自然科学基金 11602009

中国科协青年人才托举工程 2017QNRC001

中央高校基本科研业务费专项资金 

详细信息
    作者简介:

    吴晓杰   男, 博士研究生。主要研究方向:深空探测器轨道动力学与轨道设计、火卫一附近轨道动力学与控制

    王悦   男, 博士, 副教授, 博士生导师。主要研究方向:航天动力学、轨道动力学、小天体探测、空间碎片减缓

    通讯作者:

    王悦. E-mail:ywang@buaa.edu.cn

  • 中图分类号: V412.4+1

Periodic quasi-satellite orbits around Phobos and their injections

Funds: 

National Natural Science Foundation of China 11872007

National Natural Science Foundation of China 11432001

National Natural Science Foundation of China 11602009

the Young Elite Scientist Sponsorship Program by CAST 2017QNRC001

the Fundamental Research Funds for the Central Universities 

More Information
  • 摘要:

    围绕火卫一的准卫星轨道(QSOs)因其具有良好的稳定性,是火卫一探测任务最为实用的轨道。在平面圆型限制性三体问题模型下,利用庞加莱截面和KAM环迭代方法探究了准卫星轨道的周期轨道族,并给出不同能量准卫星周期轨道的初始条件。针对火卫一周期准卫星轨道入轨,提出一种转移轨道设计方法:对准卫星周期轨道调整速度后进行反向积分,直至离开火卫一邻近区域,从而得到由火星环绕轨道向火卫一周期准卫星轨道的转移轨道,并调整转移轨道参数对燃料与时间消耗进行优化。研究结果表明,当周期准卫星轨道能量处于特定区间时,存在特定速度脉冲区间,可利用火卫一引力实现较少燃料消耗的轨道转移;在该速度脉冲区间中,通过选取较小的速度脉冲,可缩短转移时间。

     

  • 图 1  原点位于火星火卫一系统质心的旋转坐标系

    Figure 1.  Synodic coordinate system with origin at the barycenter of Mars and Phobos

    图 2  庞加莱截面

    Figure 2.  Poincaré's surface of section

    图 3  不同Jacobi常数下的庞加莱映射

    Figure 3.  Poincaré's maps with different Jacobi constants

    图 4  不同Jacobi常数下的庞加莱映射边界

    Figure 4.  Poincaré's maps' borders with different Jacobi constants

    图 5  一个典型的KAM环迭代过程

    Figure 5.  A typical KAM tori iteration process

    图 6  周期准卫星轨道族

    Figure 6.  Periodic QSO family

    图 7  火卫一周期准卫星轨道入轨

    Figure 7.  Injection to a periodic QSO of the Phobos

    图 8  不同速度脉冲ΔV时回溯轨道与火卫一的最远距离(C=2.999890,x=98.3209km)

    Figure 8.  Maximum distance from backward orbits to the Phobos with different impulsive velocity ΔV (C=2.999890, x=98.3209km)

    图 9  P1P2P3P4P5各点的回溯轨道

    Figure 9.  Backward orbits on point P1, P2, P3, P4, P5

    图 10  不同Jacobi常数下的T区窗口分布

    Figure 10.  T window distribution with different Jacobi constants

    图 11  不同Jacobi常数下,轨道转移时间与T区速度脉冲ΔV的关系

    Figure 11.  Relationship between orbit transfer time and impulsive velocity ΔV with different Jacobi constants

    表  1  不同Jacobi常数下周期准卫星轨道初始条件

    Table  1.   Initial conditions of periodic QSOs with different Jacobi constants

    C x/km /(m·s -1)
    2.999890 98.3209 -44.8851
    2.999895 96.0619 -43.8670
    2.999900 93.7446 -42.8242
    2.999905 91.3702 -41.7557
    2.999910 88.9317 -40.6591
    2.999915 86.4245 -39.5325
    2.999920 83.8423 -38.3731
    2.999925 81.1778 -37.1777
    2.999930 78.4230 -35.9433
    2.999935 75.5678 -34.6659
    2.999940 72.6002 -33.3401
    2.999945 69.5060 -31.9607
    2.999950 66.2674 -30.5208
    2.999955 62.8619 -29.0120
    2.999960 59.2610 -27.4234
    2.999965 55.4265 -25.7418
    2.999970 51.3062 -23.9504
    2.999975 46.8255 -22.0263
    2.999980 41.8731 -19.9418
    2.999985 36.2733 -17.6650
    下载: 导出CSV

    表  2  入轨区P4点入轨停泊轨道要素(相对火星)

    Table  2.   Orbital elements of parking orbit for injection point P4 (with respect to the Mars)

    参数 数值
    半长轴a/km 9248.87
    偏心率e 0.016906
    升交点赤经Ω/(°) 0
    近火点辐角ω/(°) 221.99
    倾角i/(°) 0
    下载: 导出CSV
  • [1] 耿言, 周继时, 李莎, 等.我国首次火星探测任务[J].深空探测学报, 2018, 5(5):399-405. http://d.old.wanfangdata.com.cn/Periodical/sktcxb201805001

    GENG Y, ZHOU J S, LI S, et al.A brief introduction of the first Mars exploration mission in China[J].Journal of Deep Space Exploration, 2018, 5(5):399-405(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/sktcxb201805001
    [2] GIL P J S, SCHWARTZ J.Simulations of quasi-satellite orbits around Phobos[J].Journal of Guidance, Control, and Dynamics, 2010, 33(3):901-914. doi: 10.2514/1.44434
    [3] IKEDA H, MITANI S, MIMASU Y, et al.Orbital operations strategy in the vicinity of Phobos[C]//26th International Symposium on Space Flight Dynamics(ISSFD), 2017: ISTS-2017-d-008/ISSFD-2017-008.
    [4] CANALISA E, LORDA L, MARTIN T, et al.Trajectory analysis for the Phobos proximity phase of the MMX mission[C]//26th International Symposium on Space Flight Dynamics(ISSFD), 2017: ISTS-2017-d-050/ISSFD-2017-050.
    [5] JANSSON S W.Stable orbits about the Martian moons[D].Wright-Patterson AFB: Air Force Institute of Technology, 1990.
    [6] WIESEL W E.Stable orbits about the Martian moons[J].Journal of Guidance, Control, and Dynamics, 1993, 16(3):434-440. doi: 10.2514/3.21028
    [7] TUCHIN A G.Quasi-synchronous orbits and their employment for the approach of a spacecraft to Phobos[J].Cosmic Research, 2007, 45(2):131-136. doi: 10.1134/S0010952507020062
    [8] CABRAL F.On the stability of quasi-satellite orbits in the elliptic restricted three-body problem-Application to the Mars-Phobos system[D].Lisbon: Technical University of Lisbon, 2011.
    [9] WALLACE M S, PARKER J S, STRANGE N J, et al.Orbital operations for Phobos and Deimos exploration: AIAA-2012-5067[R].Reston: AIAA, 2012.
    [10] ZAMARO M, BIGGS J D.Dynamical system techniques for designing libration point orbits in proximity of highly-inhomogeneous planetary satellites: Application to the Mars-Phobos elliptic three-body problem with additional gravity harmonics[C]//International Congress on Nonlinear Problems in Aviation and Aeronautics.Melville: AIP Publishing, 2014: 1637: 1228-1240.
    [11] ZAMARO M, BIGGS J D.Natural motion around the Martian moon Phobos:The dynamical substitutes of the libration point orbits in an elliptic three-body problem with gravity harmonics[J].Celestial Mechanics and Dynamical Astronomy, 2015, 122(3):263-302. doi: 10.1007/s10569-015-9619-2
    [12] ZAMARO M.Natural and artificial orbits around the Martian moon Phobos[D].Glasgow: University of Strathclyde, 2015.
    [13] ZAMARO M, BIGGS J D.Identification of new orbits to enable future mission opportunities for the human exploration of the Martian moon Phobos[J].Acta Astronautica, 2016, 119:160-182. doi: 10.1016/j.actaastro.2015.11.007
    [14] CHAO B F, RUBINCAM D P.The gravitation field of Phobos[J].Geophysical Research Letters, 1989, 16(8):859-862. doi: 10.1029/GL016i008p00859
    [15] WILLNER K, OBERST J, HUSSMANN H, et al.Phobos control point network, rotation, and shape[J].Earth and Planetary Science Letters, 2010, 294(3-4):541-546. doi: 10.1016/j.epsl.2009.07.033
    [16] WAHLISCH M, WILLNER K, OBERST J, et al.A new topographic image atlas of Phobos[J].Earth and Planetary Science Letters, 2010, 294(3-4):547-553. doi: 10.1016/j.epsl.2009.11.003
    [17] WILLNER K, SHI X, OBERST J.Phobos' shape and topography models[J].Planetary and Space Science, 2014, 102:51-59. doi: 10.1016/j.pss.2013.12.006
    [18] 史弦, 平劲松, 叶叔华, 等.基于形状的火卫一重力场研究[J].航天器工程, 2012, 21(2):6-11. doi: 10.3969/j.issn.1673-8748.2012.02.004

    SHI X, PING J S, YE S H, et al.Analysis of shape-based gravity field model for Phobos[J].Spacecraft Engineering, 2012, 21(2):6-11(in Chinese). doi: 10.3969/j.issn.1673-8748.2012.02.004
    [19] SCHEERES D J, WAL V S, OLIKARA Z, al et.Dynamics in the Phobos environment[J].Advances in Space Research, 2019, 63(1):476-495. doi: 10.1016/j.asr.2018.10.016
    [20] WERNER R A, SCHEERES D J.Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4796 Castalia[J].Celestial Mechanics and Dynamical Astronomy, 1997, 65:313-344. https://www.researchgate.net/profile/D_Scheeres/publication/225977508_Exterior_Gravitation_of_a_Polyhedron_Derived_and_Compared_with_Harmonic_and_Mascon_Gravitation_Representations_of_Asteroid_4769_Castalia/links/0c960535e7e5d007ed000000/Exterior-Gravitation-of-a-Polyhedron-Derived-and-Compared-with-Harmonic-and-Mascon-Gravitation-Representations-of-Asteroid-4769-Castalia.pdf
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  600
  • HTML全文浏览量:  106
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-16
  • 录用日期:  2019-10-27
  • 网络出版日期:  2020-06-20

目录

    /

    返回文章
    返回
    常见问答