留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字开关液压系统管路压力波传播建模与分析

陈晓明 朱玉川 吴昌文 高强 江裕雷

陈晓明, 朱玉川, 吴昌文, 等 . 数字开关液压系统管路压力波传播建模与分析[J]. 北京航空航天大学学报, 2020, 46(7): 1335-1344. doi: 10.13700/j.bh.1001-5965.2019.0478
引用本文: 陈晓明, 朱玉川, 吴昌文, 等 . 数字开关液压系统管路压力波传播建模与分析[J]. 北京航空航天大学学报, 2020, 46(7): 1335-1344. doi: 10.13700/j.bh.1001-5965.2019.0478
CHEN Xiaoming, ZHU Yuchuan, WU Changwen, et al. Modeling and analysis of pressure wave propagation inside pipeline of digital switched hydraulic system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1335-1344. doi: 10.13700/j.bh.1001-5965.2019.0478(in Chinese)
Citation: CHEN Xiaoming, ZHU Yuchuan, WU Changwen, et al. Modeling and analysis of pressure wave propagation inside pipeline of digital switched hydraulic system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1335-1344. doi: 10.13700/j.bh.1001-5965.2019.0478(in Chinese)

数字开关液压系统管路压力波传播建模与分析

doi: 10.13700/j.bh.1001-5965.2019.0478
基金项目: 

国家自然科学基金 51575258

国家自然科学基金 51975275

详细信息
    作者简介:

    陈晓明  男, 博士研究生。主要研究方向:数字开关惯性液压技术

    朱玉川  男, 博士, 教授, 博士生导师。主要研究方向:数字开关惯性液压技术

    通讯作者:

    朱玉川, E-mail:meeyczhu@nuaa.edu.cn

  • 中图分类号: TH137

Modeling and analysis of pressure wave propagation inside pipeline of digital switched hydraulic system

Funds: 

National Natural Science Foundation of China 51575258

National Natural Science Foundation of China 51975275

More Information
  • 摘要:

    为准确描述数字开关液压系统管路压力波传播特性,应用基于传递函数与时间延迟的管路压力波传播分析模型,通过耦合高速开关阀输出流量特性与管路压力波传播分析模型,实现两位两通高速开关阀控缸系统管路压力波传播特性的建模与分析,讨论了不同参数下的管路压力波传播特性,并通过相应的实验加以验证。结果表明,实验结果与分析模型结果一致性较好,高速开关阀动态特性与系统管路压力波传播特性密切相关,管路属性对系统管路压力波传播过程影响显著,将为后续数字开关惯性液压系统的研究奠定基础。

     

  • 图 1  数字开关液压系统原理图

    Figure 1.  Schematic diagram of digital switched hydraulic system

    图 2  高速开关阀结构示意图

    Figure 2.  Schematic diagram of fast switching valve structure

    图 3  高速开关阀球阀受力示意图

    Figure 3.  Schematic diagram of force of valve of fast switching valve

    图 4  管路传输模型方框图

    Figure 4.  Block diagram of transmission line model

    图 5  管路传输方法q1p2模型

    Figure 5.  Transmission line method q1p2 model

    图 6  TLM q1p2模型结果

    Figure 6.  Results of TLM q1p2 model

    图 7  管路压力波传播分析模型基本框图

    Figure 7.  Basic block diagram of pressure wave propagation analytical model inside pipeline

    图 8  恒定负载情况下高速开关阀流量输出流量特性

    Figure 8.  Output flowrate characteristics of fast switching valve under constant load

    图 9  压力波有效传播速度随管壁厚度的变化曲线

    Figure 9.  Changing curves of pressure wave propagation effective speed with pipe thickness

    图 10  不同压力波有效传播速度下高速开关阀阀后压力响应

    Figure 10.  Downstream pressure response of fast switching valve under different effective propagation speed of pressure wave

    图 11  有效体积弹性模量随管壁厚度变化曲线

    Figure 11.  Changing curves of effective volume modulus with pipe thickness

    图 12  恒定负载下高速开关阀阀后压力响应曲线

    Figure 12.  Downstream pressure response of fast switching valve under constant load

    图 13  不同管路尺寸下的黏性损耗系数

    Figure 13.  Viscous dissipation coefficient under different dimension of pipeline

    图 14  不同管路长度下高速开关阀阀后压力响应对比曲线

    Figure 14.  Comparison of pressure response of fast switching valve under different pipe length

    图 15  在数字开关液压系统中高速开关阀阀后压力响应曲线

    Figure 15.  Downstream pressure response curves of fast switching valve in digital switched hydraulic system

    图 16  在数字开关液压系统中高速开关阀输出流量特性曲线

    Figure 16.  Output flowrate characteristics curves of fast switching valve in digital switched hydraulic system

    图 17  数字开关液压系统管路压力响应实验测试系统

    Figure 17.  Experimental measurement rig for pressure response inside pipeline in digital switched hydraulic system

    图 18  不同频率下高速开关阀阀后压力响应对比曲线

    Figure 18.  Comparison curves of downstream pressure response of fast switching valve under different frequency

    表  1  分析模型主要参数

    Table  1.   Main parameters of analytical model

    编号 参数 数值
    1 液压软管弹性模量Eh /Pa 8×109
    2 刚性管弹性模量Es/Pa 2.06×1011
    3 油液密度ρ/(kg·m-3) 878
    4 油液动力黏度μ/(Pa·s) 0.040 25
    5 纯油液体积弹性模量K /Pa 1.8×109
    下载: 导出CSV
  • [1] VACCA A.Energy efficiency and controllability of fluid power systems[J].Energies, 2018, 11(5):1-6. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-e201706002
    [2] LOVE L, LANKE E, ALLES P.Estimating the impact(energy, emissions and economics)of the US fluid power industry: ORNL/TM-2011/14[R].Oak Ridge: Oak Ridge National Laboratory, 2012.
    [3] LINJAMA M.Digital fluid power: State of the art[C]//12th Scandinavian International Conference on Fluid Power, 2011: 18-20.
    [4] SCHEIDL R, LINJAMA M, SCHMIDT S.Is the future of fluid power digital [J].Proceedings of the Institution of Mechanical Engineers, Part Ⅰ:Journal of Systems and Control Engineering, 2012, 226(6):721-723. http://cn.bing.com/academic/profile?id=9b33fbb71e1ba72379150431a94ea7f6&encoded=0&v=paper_preview&mkt=zh-cn
    [5] YANG H, PAN M.Engineering research in fluid power:A review[J].Journal of Zhejiang University-Science A, 2015, 16(6):427-442. doi: 10.1631/jzus.A1500042
    [6] YUAN C, PAN M, PLUMMER A.A review of switched inertance hydraulic converter technology[C]//ASME/BATH 2018 Symposium on Fluid Power and Motion Control.New York: ASME, 2018: V001T01A013.
    [7] PAN M, PLUMMER A.Digital switched hydraulics[J].Frontiers of Mechanical Engineering, 2018, 13(2):225-231. doi: 10.1007/s11465-018-0509-7
    [8] JOHNSTON D N.A switched inertance device for efficient control of pressure and flow[C]//ASME 2009 Dynamic Systems and Control Conference.New York: ASME, 2009: 589-596.
    [9] BROWN F T.Switched reactance hydraulics: A new way to control fluid power[C]//National Conference on Fluid Power, 1987: 25-34.
    [10] BROWN F T, TENTARELLI S C, RAMACHANDRAN S.A hydraulic rotary switched-inertance servo-transformer[J].Journal of Dynamic Systems, Measurement, and Control, 1988, 110(2):144-150. doi: 10.1115/1.3152664
    [11] WINKLER B.Development of a fast low-cost switching valve for big flow rates[C]//3rd PFNI-PhD Symposium on Fluid Power, 2004: 599-606.
    [12] SELL N P, JOHNSTON N, PLUMMER A R, et al.Development of a position controlled digital hydraulic valve[C]//ASME/BATH 2015 Symposium on Fluid Power and Motion Control.New York: ASME, 2015: V001T01A008.
    [13] KOKTAVY S E, YUDELL A C, VAN DE VEN J D.Design of a crank-slider spool valve for switch-mode circuits with experimental validation[J].Journal of Dynamic Systems, Measurement, and Control, 2018, 140(6):061008. doi: 10.1115/1.4038537
    [14] KRUS P, WEDDFELT K, PALMBERG J O.Fast pipeline models for simulation of hydraulic systems[J].Journal of Dynamic Systems, Measurement, and Control, 1994, 116(1):132-136. doi: 10.1115/1.2900667
    [15] JOHNSTON N, PAN M, KUDZMA S.An enhanced transmission line method for modelling laminar flow of liquid in pipelines[J].Proceedings of the Institution of Mechanical Engineers, Part Ⅰ:Journal of Systems and Control Engineering, 2014, 228(4):193-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=09bfad6289d9adb7fc39910587b4e231
    [16] VEN DER BUHS J W, WIENS T K.Modeling dynamic response of hydraulic fluid within tapered transmission lines[J].Journal of Dynamic Systems, Measurement, and Control, 2018, 140(12):121008. doi: 10.1115/1.4040667
    [17] WIENS T, VEN DER BUHS J W.Transmission line modeling of laminar liquid wave propagation in tapered tubes[J].Journal of Fluids Engineering, 2019, 141(10):101103. doi: 10.1115/1.4043235
    [18] DE NEGRI V J, WANG P, PLUMMER A, et al.Behavioural prediction of hydraulic step-up switching converters[J].International Journal of Fluid Power, 2014, 15(1):1-9. doi: 10.1080/14399776.2014.882057
    [19] DE NEGRI V J, NOSTRANI M P, WANG P, et al.Modelling and analysis of hydraulic step-down switching converters[J].International Journal of Fluid Power, 2015, 16(2):111-121. doi: 10.1080/14399776.2015.1067482
    [20] PAN M.Active control of pressure pulsation in a switched inertance hydraulic system[D].Bath: University of Bath, 2012.
    [21] PAN M.Adaptive control of a piezoelectric valve for fluid-borne noise reduction in a hydraulic buck converter[J].Journal of Dynamic Systems, Measurement, and Control, 2017, 139(8):081007. doi: 10.1115/1.4035613
    [22] PAN M, JOHNSTON N, ROBERTSON J, et al.Experimental investigation of a switched inertance hydraulic system with a high-speed rotary valve[J].Journal of Dynamic Systems, Measurement, and Control, 2015, 137(12):121003. doi: 10.1115/1.4031325
    [23] YUDELL A C, KOKTAVY S E, VAN DE VEN J D.Crank-slider spool valve for switch-mode circuits[C]//ASME/BATH 2015 Symposium on Fluid Power and Motion Control.New York: ASME, 2015: V001T01A056.
    [24] KOGLER H, SCHEIDL R, SCHMIDT B H.Analysis of wave propagation effects in transmission lines due to digital valve switching[C]//ASME/BATH 2015 Symposium on Fluid Power and Motion Control.New York: ASME, 2015: V001T01A057.
    [25] ZHAO J, WANG M, WANG Z, et al.Different boost voltage effects on the dynamic response and energy losses of high-speed solenoid valves[J].Applied Thermal Engineering, 2017, 123:1494-1503. doi: 10.1016/j.applthermaleng.2017.05.117
    [26] 徐哲.汽车线控液压制动系统特性及控制研究[D].南京: 南京航空航天大学, 2014.

    XU Z.Research on characteristics and control of electro-hydraulic brake system[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
    [27] 苏明.电磁高速开关阀控制特性及方法研究[D].贵阳: 贵州大学, 2010.

    SU M.Study on control characteristics and method of high speed on/off solenoid valve[D].Guiyang: Guizhou University, 2010(in Chinese).
    [28] TAYLOR S E M, JOHNSTON D N, LONGMORE D K.Modelling of transient flow in hydraulic pipelines[J].Proceedings of the Institution of Mechanical Engineers, Part Ⅰ:Journal of Systems and Control Engineering, 1997, 211(6):447-455. http://cn.bing.com/academic/profile?id=6ab33f1a1fa0bdfe3d69488197e3ba1e&encoded=0&v=paper_preview&mkt=zh-cn
    [29] 盛敬超.液压流体力学[M].北京:机械工业出版社, 1981:9-10.

    SHENG J C.Hydraulic fluid mechanics[M].Beijing:Mechanical Industry Press, 1981:9-10(in Chinese).
    [30] JOHNSTON D N.Efficient methods for numerical modeling of laminar friction in fluid lines[J].Journal of Dynamic Systems, Measurement, and Control, 2006, 128(4):829-834. doi: 10.1115/1.2361320
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  566
  • HTML全文浏览量:  175
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 录用日期:  2019-10-11
  • 网络出版日期:  2020-07-20

目录

    /

    返回文章
    返回
    常见问答