留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模拟月壤铺粉过程DEM数值仿真

李雯 徐可宁 黄勇 胡文颖 王道宽

李雯, 徐可宁, 黄勇, 等 . 模拟月壤铺粉过程DEM数值仿真[J]. 北京航空航天大学学报, 2020, 46(10): 1863-1873. doi: 10.13700/j.bh.1001-5965.2019.0443
引用本文: 李雯, 徐可宁, 黄勇, 等 . 模拟月壤铺粉过程DEM数值仿真[J]. 北京航空航天大学学报, 2020, 46(10): 1863-1873. doi: 10.13700/j.bh.1001-5965.2019.0443
LI Wen, XU Kening, HUANG Yong, et al. Numerical simulation of spreading process of lunar regolith simulant by DEM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1863-1873. doi: 10.13700/j.bh.1001-5965.2019.0443(in Chinese)
Citation: LI Wen, XU Kening, HUANG Yong, et al. Numerical simulation of spreading process of lunar regolith simulant by DEM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1863-1873. doi: 10.13700/j.bh.1001-5965.2019.0443(in Chinese)

模拟月壤铺粉过程DEM数值仿真

doi: 10.13700/j.bh.1001-5965.2019.0443
基金项目: 

国家自然科学基金 51705490

国家自然科学基金 51876004

详细信息
    作者简介:

    李雯   女,博士,研究员。主要研究方向:机械传动与摩擦学、特种材料增材制造技术及多尺度数值仿真技术

    黄勇  男,教授,博士生导师。主要研究方向:空间热辐射理论

    通讯作者:

    李雯. E-mail:mosquato@buaa.edu.cn

  • 中图分类号: V11;TH16

Numerical simulation of spreading process of lunar regolith simulant by DEM

Funds: 

National Natural Science Foundation of China 51705490

National Natural Science Foundation of China 51876004

More Information
  • 摘要:

    空基激光选区熔化(SLM)技术与原位资源利用(ISRU)概念结合,有望解决地外大规模基地建设的工程难题。SLM铺粉过程对成形件性能和质量有重要影响。基于非球形粒子叠加球模型方法,建立模拟月壤颗粒几何模型;基于线性弹簧-阻尼接触作用模型、Hamaker理论及牛顿运动定律,建立颗粒动力学模型;采用三维离散单元方法(DEM)及软球模型,进行不同工况下模拟月壤在铺粉过程中的流变特性研究。结果显示:所提模型和方法能开展指定工况和环境参数的模拟月壤颗粒系统流动性和堆积行为数值仿真研究;月面低重力环境导致粉床表面粗糙度变大、堆积密度和平均配位数变小;通过降低铺粉速度和优化刮刀型面,可以有效改善月基铺粉的粉床质量,获得更密实和均匀的粉床结构。

     

  • 图 1  模拟月壤SEM照片[19]

    Figure 1.  SEM image of lunar regolith simulant[19]

    图 2  模拟月壤颗粒的简化模型

    Figure 2.  Simplified models of lunar regolith simulant particles

    图 3  球单元间的接触作用模型

    Figure 3.  Contact reaction model between spherical elements

    图 4  月壤颗粒间范德华力曲线

    Figure 4.  Van der Waals force curves for lunar regolith particles

    图 5  不同重力下月壤颗粒K值曲线

    Figure 5.  K curves for lunar regolith particles under lunar and earth gravity

    图 6  铺粉装置全尺度简化模型

    Figure 6.  Simplified full-scale model of powder spreading device

    图 7  铺粉仿真DEM模型

    Figure 7.  DEM model for powder spreading simulation

    图 8  三轴压缩实验的DEM模型[21]

    Figure 8.  DEM model for triaxial compression test[21]

    图 9  粉床上环刀取样模型示意图

    Figure 9.  Schematic of cutting-ring sampling model for powder bed

    图 10  粉床DEM数值仿真结果

    Figure 10.  Powder bed simulated by DEM

    图 11  粉床表面形貌曲线(Y=0)

    Figure 11.  Rough-surface profile of powder bed(Y=0)

    图 12  粉床堆积密度分布柱状图

    Figure 12.  Packing density distribution histogram of powder bed

    图 13  粉床平均配位数分布柱状图

    Figure 13.  Average coordination number distribution histogram of powder bed

    图 14  月基铺粉DEM仿真结果(g=1.63m/s2)

    Figure 14.  Lunar-based powder-layering DEM simulation results (g=1.63m/s2)

    图 15  沉积粉层堆积密度分布柱状图

    Figure 15.  Packing density distribution histogram of deposited powder layer

    图 16  沉积粉层平均配位数分布柱状图

    Figure 16.  Average coordination number distribution histogram of deposited powder layer

    图 17  粉床堆积密度分布柱状图

    Figure 17.  Packing density distribution histogram of powder bed

    图 18  粉床平均配位数分布柱状图

    Figure 18.  Average coordination number distribution histogram of powder bed

    表  1  模拟月壤DEM模型参数

    Table  1.   DEM model parameters for lunar regolith simulant

    参数 数值
    颗粒密度ρp/(kg·m-3) 2770
    法向弹簧刚度kn/(N·m-1) 1×105
    切向弹簧刚度ks/(N·m-1) 1×105
    法向阻尼系数cn 0.7
    切向阻尼系数cs 0.7
    摩擦系数μp 0.3
    下载: 导出CSV
  • [1] SANDERS G B, LARSON W E, PICARD M.Development and demonstration of sustainable surface infrastructure for Moon/Mars exploration[C]//62nd International Astronautical Congress, 2011: JSC-CN-24659.
    [2] FATERI M, GEBHARDT A.Experimental investigation of selective laser melting of lunar regolith for in-situ applications[C]//International Mechanical Engineering Congress and Exposition.New York: ASME, 2013: IMECE2013-64334.
    [3] HAFLEY R A.Electron beam free-form fabrication in the space environment[C]//Aerospace Sciences Meeting and Exhibit.Reston: AIAA, 2007: 8-11.
    [4] PRATER T, WERKHEISER N, LEDBETTER F.3D printing in zero G technology demonstration mission:Complete experimental results and summary of related material modeling efforts[J].International Journal of Advanced Manufacturing Technology, 2019, 101(1-4):391-417. doi: 10.1007/s00170-018-2827-7
    [5] WERKHEISER N.In-space manufacturing: 3D printing in space technology demonstration[C]//National Space & Missile Materials Symposium, 2015: M15-4685.
    [6] CECCANTI F, DINI E, KESTELIER X D, et al.3D printing technology for a Moon outpost exploiting lunar soil[C]//61st International Astronautical Congress, 2010: 8812-8820.
    [7] CESARETTI G, DINI E, DE KESTELIER X, et al.Building components for an outpost on the lunar soil by means of a novel 3D printing technology[J].Acta Astronautica, 2014, 93:430-450. doi: 10.1016/j.actaastro.2013.07.034
    [8] BALLA V K, ROBERSON L B, OCONNOR G W, et al.First demonstration on direct laser fabrication of lunar regolith parts[J].Rapid Prototyping Journal, 2012, 18(6):451-457. doi: 10.1108/13552541211271992
    [9] FATERI M, GEBHARDT A.Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications[J].International Journal of Applied Ceramic Technology, 2015, 12(1):46-52. doi: 10.1111/ijac.12326
    [10] GOULAS A, BINNER J G P, HARRIS R A, et al.Assessing extraterrestrial regolith material simulants for in-situ resource utilization based 3D printing[J].Applied Materials Today, 2017, 6:54-61. doi: 10.1016/j.apmt.2016.11.004
    [11] GERDESL N, FOKKEN G, LINKE S, et al.Selective laser melting for processing of regolith in support of a lunar base[J].Journal of Laser Applications, 2018, 30(3):032018. doi: 10.2351/1.5018576
    [12] GU D, MEINERS W, WISSENBACH K, et al.Laser additive manufacturing of metallic components:Materials, processes and mechanisms[J].International Materials Reviews, 2012, 57(3):133-164. doi: 10.1179/1743280411Y.0000000014
    [13] ZIEGELMEIER S, CHRISTOU P, WOLLECKE F, et al.An experimental study into the effects of bulk and flow behaviour of laser sintering polymer powders on resulting part properties[J].Journal of Materials Processing Technology, 2015, 215(1):239-250. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce183528b4274bcf3edafc50d5197fc7
    [14] ZOHDI T I.Rapid simulation of laser processing of discrete particulate materials[J].Archives of Computational Methods in Engineering, 2013, 20(4):309-325. doi: 10.1007/s11831-013-9092-6
    [15] XIANG Z W, YIN M, DENG Z, et al.Simulation of forming process of powder bed for additive manufacturing[J].Journal of Manufacturing Science and Engineering, 2016, 138(8):081002-1-081002-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe46e3c239e7125b2434a6c71afea2cd
    [16] CHEN H, WEI Q, WEN S, et al.Flow behavior of powder particles in layering process of selective laser melting:Numerical modeling and experimental verification based on discrete element method[J].International Journal of Machine Tools and Manufacture, 2017, 123:146-159. doi: 10.1016/j.ijmachtools.2017.08.004
    [17] PARTELI E J, POSCHEL T.Particle-based simulation of powder application in additive manufacturing[J].Powder Technology, 2016, 288:96-102. doi: 10.1016/j.powtec.2015.10.035
    [18] HAERI S, WANG Y, GHITA O, et al.Discrete element simulation and experimental study of powder spreading process in additive manufacturing[J].Powder Technology, 2017, 306:45-54. doi: 10.1016/j.powtec.2016.11.002
    [19] HAERI S.Optimisation of blade type spreaders for powder bed preparation in additive manufacturing using DEM simulations[J].Powder Technology, 2017, 321:94-104. doi: 10.1016/j.powtec.2017.08.011
    [20] LI W, HUANG Y, CUI Y, et al.Trafficability analysis of lunar mare terrain by means of the discrete element method for wheeled rover locomotion[J].Journal of Terramechanics, 2010, 47(3):161-172. doi: 10.1016/j.jterra.2009.09.002
    [21] HUANG Y, LU X, ZHAO R, et al.Three dimensional simulation of lunar dust levitation under the effect of simulated sphere body[J].Journal of Terramechanics, 2011, 48(4):297-306. doi: 10.1016/j.jterra.2011.06.005
    [22] HUANG Y, ZHAO R, LI W, et al.Radiative characteristics of nonspherical particles based on a particle superposition model[J].Journal of Geophysical Research, 2013, 118(20):762-769. http://adsabs.harvard.edu/abs/2013JGRD..11811762H
    [23] RENZO A D, MAIO F P.Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J].Chemical Engineering Science, 2004, 59(3):525-541. doi: 10.1016/j.ces.2003.09.037
    [24] JOHNSON K L, GREENWOOD J A.An adhesion map for the contact of elastic spheres[J].Journal of Colloid and Interface Science, 1997, 192(2):326-333. doi: 10.1006/jcis.1997.4984
    [25] GOTZINGER M, PEUKERT W.Dispersive forces of particle-surface interactions:Direct AFM measurements and modelling[J].Powder Technology, 2003, 130(1-3):102-109. doi: 10.1016/S0032-5910(02)00234-6
    [26] ISRAELACHVILI J N.Intermolecular and surface forces[M].2nd ed.Salt Lake City:Academic Press, 1992.
    [27] POPEL S I, ZELENYI L M, GOLUB A P, et al.Lunar dust and dusty plasmas:Recent developments, advances, and unsolved problems[J].Planetary and Space Science, 2018, 156:71-84. doi: 10.1016/j.pss.2018.02.010
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  45
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-16
  • 录用日期:  2020-04-18
  • 网络出版日期:  2020-10-20

目录

    /

    返回文章
    返回
    常见问答