留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预测纳米多孔铜弹性模量的随机分布单胞模型

计羽 邢誉峰 邵丽华

计羽, 邢誉峰, 邵丽华等 . 预测纳米多孔铜弹性模量的随机分布单胞模型[J]. 北京航空航天大学学报, 2020, 46(10): 1923-1928. doi: 10.13700/j.bh.1001-5965.2019.0538
引用本文: 计羽, 邢誉峰, 邵丽华等 . 预测纳米多孔铜弹性模量的随机分布单胞模型[J]. 北京航空航天大学学报, 2020, 46(10): 1923-1928. doi: 10.13700/j.bh.1001-5965.2019.0538
JI Yu, XING Yufeng, SHAO Lihuaet al. Stochastic unit cell model for predicting elastic modulus of nanoporous copper[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1923-1928. doi: 10.13700/j.bh.1001-5965.2019.0538(in Chinese)
Citation: JI Yu, XING Yufeng, SHAO Lihuaet al. Stochastic unit cell model for predicting elastic modulus of nanoporous copper[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1923-1928. doi: 10.13700/j.bh.1001-5965.2019.0538(in Chinese)

预测纳米多孔铜弹性模量的随机分布单胞模型

doi: 10.13700/j.bh.1001-5965.2019.0538
基金项目: 

国家自然科学基金 11672019

详细信息
    作者简介:

    计羽  女, 博士研究生。主要研究方向:纳米多孔复合材料力学

    邢誉峰  男, 博士, 教授。主要研究方向:结构动力学、复合材料结构力学、计算固体力学

    邵丽华  女, 博士, 副教授。主要研究方向:新型功能材料性能与应用、复合材料力学

    通讯作者:

    邢誉峰, E-mail: xingyf@buaa.edu.cn

  • 中图分类号: TB33

Stochastic unit cell model for predicting elastic modulus of nanoporous copper

Funds: 

National Natural Science Foundation of China 11672019

More Information
  • 摘要:

    纳米多孔铜的弹性模量实测值远低于分子动力学的模拟结果,且实际韧带尺寸远大于分子动力学模拟结果。通过Python平台在ABAQUS中构建纳米多孔材料的随机分布单胞模型,基于热应力比拟方法,用多尺度均匀化方法求出均匀化弹性参数。首先,利用所提模型预测纳米多孔金的弹性模量并与实测结果进行了对比,两者的高度吻合说明所提模型的有效性。其次,预测并分析了不同体积分数下纳米多孔铜的均匀化弹性模量,发现了纳米多孔铜均匀化弹性模量随着体积分数变化的阈值现象,并从力学角度对其机理进行了解释,分析了预测结果大于实测结果的影响因素。

     

  • 图 1  体积分数为25%的随机分布单胞模型

    Figure 1.  Stochastic unit cell model with a volume fraction of 25%

    图 2  球棍模型组成的4×4×4立方结构模型

    Figure 2.  A ball-and-stick model with 4×4×4 cubic structure model

    图 3  纳米多孔金的等效弹性模量与体积分数之间的关系

    Figure 3.  Relationship between equivalent elastic modulus and volume fraction of nanoporous gold

    图 4  不同单胞模型的弹性模量与实测结果的对比

    Figure 4.  Comparison of elastic moduli between different unit cell models and experimental results

    图 5  纳米多孔铜等效弹性模量与体积分数之间的关系

    Figure 5.  Relationship between equivalent elastic modulus and volume fraction of nanoporous copper

  • [1] TANAKA S, MINATO T, ITO E, et al.Selective aerobic oxidation of methanol in the coexistence of amines by nanoporous gold catalysts:Highly efficient synthesis of formamides[J].Chemistry-A European Journal, 2013, 19(36):11832-11836. doi: 10.1002/chem.201302396
    [2] HAKAMADA M, MABUCHI M.Mechanical strength of nanoporous gold fabricated by dealloying[J].Scripta Materialia, 2007, 56(11):1003-1006. doi: 10.1016/j.scriptamat.2007.01.046
    [3] BIENER J, HODGE A M, HAYES J R, et al.Size effects on the mechanical behavior of nanoporous Au[J].Nano Letters, 2006, 6(10):2379-2382. doi: 10.1021/nl061978i
    [4] LI Z Q, LU X, WANG Q, et al.Effect of nanoindentation depth and ligament size on mechanical properties of nanoporous silver[J].Micro & Nano Letters, 2017, 13(4):461-464. http://ieeexplore.ieee.org/document/8332178/
    [5] SUN X Y, XU G K, LI X, et al.Mechanical properties and scaling laws of nanoporous gold[J].Journal of Applied Physics, 2013, 113(2):023505. doi: 10.1063/1.4774246
    [6] HUBER N, VISWANATH R N, MAMEKA N, et al.Scaling laws of nanoporous metals under uniaxial compression[J].Acta Materialia, 2014, 67(1):252-265. http://www.sciencedirect.com/science/article/pii/S1359645413009385
    [7] WANG Y, WANG Y Z, ZHANG C, et al.Tuning the ligament/channel size of nanoporous copper by temperature control[J].CrystEngComm, 2012, 14(24):8352. http://pubs.rsc.org/en/content/articlehtml/2012/ce/c2ce25133g
    [8] WANG X Y, LIU S Q, HUANG K L, et al.Effective nanoporous copper for electrocatalytic reduction of carbon dioxide in ionic liquid[J].Functional Materials Letters, 2010, 3(3):181-183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1142/S1793604710001202
    [9] JI Y, XING Y F, ZHOU F, et al.The mechanical characteristics of monolithic nanoporous copper and its composites[J].Advanced Engineering Materials, 2018, 20(10):1800574. doi: 10.1002/adem.201800574
    [10] 吴兆虎.纳米多孔铜膜的制备及其力学性能研究[D].西安: 西安理工大学, 2019. http://cdmd.cnki.com.cn/Article/CDMD-10700-1019859052.htm

    WU Z H.Preparation and mechanical properties of nanoporous copper film[D].Xi'an: Xi'an University of Technology, 2019(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10700-1019859052.htm
    [11] 陈玉洁.纳米多孔铜力学行为的分子动力学模拟研究[D].西安: 西安理工大学, 2019. http://cdmd.cnki.com.cn/Article/CDMD-10700-1019859046.htm

    CHEN Y J.Study on mechanical behavior of nanoporous copper based on molecular dynamics[D].Xi'an: Xi'an University of Technology, 2019(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10700-1019859046.htm
    [12] YANG Q, LIANG S H, HAN B B, et al.Preparation and properties of enhanced bulk nanoporous coppers[J].Materials Letters, 2012, 73:136-138. doi: 10.1016/j.matlet.2012.01.027
    [13] OLEÏNIK O A, SHAMAEV A S, YOSIFIAN G A.Mathematical problems in elasticity and homogenization[M].Amsterdam:Elsevier, 2009.
    [14] HASSANI B, HINTON E.A review of homogenization and topology optimization I-Homogenization theory for media with periodic structure[J].Computers & Structures, 1998, 69(6):707-717. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2f652b3821cff4735321a20a760bd7a
    [15] TAKANO N, ZAKO M, ISHIZONO M.Multi-scale computational method for elastic bodies with global and local heterogeneity[J].Journal of Computer-Aided Materials Design, 2000, 7(2):111. doi: 10.1023/A:1026558222392
    [16] CHEN C M, KIKUCHI N, ROSTAM-ABADI F.An enhanced asymptotic homogenization method of the static and dynamics of elastic composite laminates[J].Computers & Structures, 2004, 82(4-5):373-382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=418d8064fc957b4cb8a055b863d9ea1b
    [17] XING Y F, GAO Y H, LI M.The multiscale eigenelement method in dynamic analyses of periodical composite structures[J].Composite Structures, 2017, 172:330-338. doi: 10.1016/j.compstruct.2017.03.082
    [18] XING Y F, GAO Y H, CHEN L, et al.Solution methods for two key problems in multiscale asymptotic expansion method[J].Composite Structures, 2017, 160:854-866. doi: 10.1016/j.compstruct.2016.10.104
    [19] CIORANESCU D, PAULIN J S J.Homogenization in open sets with holes[J].Journal of Mathematical Analysis and Applications, 1979, 71(2):590-607. http://www.ams.org/mathscinet-getitem?mr=548785
    [20] YUAN Z, FISH J.Toward realization of computational homogenization in practice[J].International Journal for Numerical Methods in Engineering, 2010, 73(3):361-380. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/nme.2074
    [21] 黄富华, 梁军, 杜善义.均匀化方法的ABAQUS实现[J].哈尔滨工业大学学报, 2010, 42(3):389-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201003011

    HUANG F H, LIANG J, DU S Y.Realization of homogenization method with ABAQUS[J].Journal of Harbin Institute of Technology, 2010, 42(3):389-392(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201003011
    [22] CHEN Y, PAN F, GUO Z, et al.Stiffness threshold of randomly distributed carbon nanotube networks[J].Journal of the Mechanics and Physics of Solids, 2015, 84:395-423. doi: 10.1016/j.jmps.2015.07.016
    [23] HAYES J R, HODGE A M, BIENER J, et al.Monolithic nanoporous copper by dealloying Mn-Cu[J].Journal of Materials Research, 2006, 21(10):2611-2616. doi: 10.1557/jmr.2006.0322
    [24] CHEN F, CHEN X, ZOU L, et al.Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu-Al alloys[J].Materials Science and Engineering:A, 2016, 660:241-250. doi: 10.1016/j.msea.2016.02.055
  • 加载中
图(5)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  79
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-10
  • 录用日期:  2019-11-01
  • 网络出版日期:  2020-10-20

目录

    /

    返回文章
    返回
    常见问答