留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于速度观测的双余度电液舵机系统容错同步控制

李婷 王新民 杨婷 曹宇燕 谢蓉

李婷, 王新民, 杨婷, 等 . 基于速度观测的双余度电液舵机系统容错同步控制[J]. 北京航空航天大学学报, 2020, 46(10): 1929-1940. doi: 10.13700/j.bh.1001-5965.2019.0564
引用本文: 李婷, 王新民, 杨婷, 等 . 基于速度观测的双余度电液舵机系统容错同步控制[J]. 北京航空航天大学学报, 2020, 46(10): 1929-1940. doi: 10.13700/j.bh.1001-5965.2019.0564
LI Ting, WANG Xinmin, YANG Ting, et al. Fault-tolerant synchronization control for a dual redundant electro-hydraulic actuator system based on velocity estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1929-1940. doi: 10.13700/j.bh.1001-5965.2019.0564(in Chinese)
Citation: LI Ting, WANG Xinmin, YANG Ting, et al. Fault-tolerant synchronization control for a dual redundant electro-hydraulic actuator system based on velocity estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1929-1940. doi: 10.13700/j.bh.1001-5965.2019.0564(in Chinese)

基于速度观测的双余度电液舵机系统容错同步控制

doi: 10.13700/j.bh.1001-5965.2019.0564
基金项目: 

国家自然科学基金 61703341

中国博士后科学基金 2018M633576

陕西省自然科学基础研究计划 2018JQ6008

陕西省博士后科学基金 2018BSHYDZZ65

中央高校基本科研业务费专项资金 3102019ZDHKY06

详细信息
    作者简介:

    李婷  女, 博士研究生。主要研究方向:飞机电液伺服系统故障诊断与容错控制

    王新民  男, 博士, 教授, 博士生导师。主要研究方向:飞控系统设计、飞机作动器故障诊断与容错控制

    通讯作者:

    王新民, E-mail: wxmin@nwpu.edu.cn

  • 中图分类号: V227+.8;TH137

Fault-tolerant synchronization control for a dual redundant electro-hydraulic actuator system based on velocity estimation

Funds: 

National Natural Science Foundation of China 61703341

China Postdoctoral Science Foundation 2018M633576

Natural Science Basic Research Program of Shaanxi 2018JQ6008

Shannxi Province Postdoctoral Science Foundation 2018BSHYDZZ65

the Fundamental Research Funds for the Central Universities 3102019ZDHKY06

More Information
  • 摘要:

    考虑飞机电液舵机活塞杆运动速度不易测量的情况,提出一种基于速度观测的容错同步控制策略,解决了双余度电液舵机系统(DREHAS)内泄漏共模故障(IL-CMF)下的位置跟踪控制问题。首先,通过引入2组参考轨迹并对模型进行线性变换,实现舵面位置跟踪与两舵机力输出同步控制解耦;其次,在扩展状态观测器(ESO)中加入故障参数自适应项,设计一种自适应扩展状态观测器(AESO)估计两通道舵机活塞杆速度和扰动,从而克服了故障条件下利用原系统模型设计ESO带来的估计结果不准确问题;最后,基于AESO的估计结果及故障参数在线更新结果,利用反步法设计了一种非线性容错同步控制器。Lyapunov稳定性分析结果表明,该控制方法可确保IL-CMF故障及时变干扰条件下,闭环系统所有信号有界,系统输出满足规定的性能要求。IL-CMF故障及常值干扰条件下,系统跟踪误差渐进收敛于零。仿真实验进一步验证了所提方法的有效性。

     

  • 图 1  主/主模式DREHAS系统结构

    Figure 1.  Structure of a DREHAS working in A/A mode

    图 2  DREHAS正常条件下一个周期的舵面位置跟踪曲线

    Figure 2.  Control surface position tracking curves for DREHAS during one cycle under normal condition

    图 3  DREHAS故障条件下一个周期的舵面位置跟踪曲线

    Figure 3.  Control surface position tracking curves for DREHAS during one cycle under faulty condition

    图 4  DREHAS系统舵面位置跟踪误差曲线

    Figure 4.  Control surface position tracking error curves for DREHAS

    图 5  DREHAS系统两通道扰动估计结果

    Figure 5.  Two-channel disturbance estimation results for DREHAS

    图 6  IL-CMF故障参数估计结果

    Figure 6.  Internal leakage common-mode fault parameter estimation results

    图 7  DREHAS系统通道间力纷争曲线

    Figure 7.  Fighting force curves between channels for DREHAS

    图 8  两通道舵机活塞杆速度估计结果

    Figure 8.  Piston rod velocity estimation results for two-channel actuators

    表  1  4种方法的舵面位置跟踪性能对比

    Table  1.   Comparison of control surface position tracking performance among four methods

    方法 正常条件下的稳态t∈[5, 10)s 故障瞬态t∈[10, 11)s 故障后的稳态t∈[25, 30)s
    Me/rad μe/rad σe/rad Me/rad Me/rad μe/rad σe/rad
    PI 0.029 3 0.018 3 0.008 0 0.039 0 0.038 8 0.023 3 0.012 6
    ASC-PVE 0.001 4 5.747 9×10-4 3.256 1×10-4 0.002 4 0.001 3 5.034 9×10-4 2.634 7×10-4
    OFRSC 2.128 5×10-4 1.314 8×10-4 6.726 8×10-5 4.822 1×10-4 4.822 4×10-4 1.840 2×10-4 1.095 1×10-4
    FTSC-PVE 2.127 6×10-4 1.317 4×10-4 6.715 4×10-5 3.239 2×10-4 2.266 7×10-4 1.387 3×10-4 6.696 8×10-5
    下载: 导出CSV
  • [1] RYDER D R.Redundancy actuator development study: N76-31177[R].Seattle: Boeing Commercial Airplane Corp., 1973: 1011-1012.
    [2] MITRA S, SAXENA N R, MCCLUSKEY E J.Common-mode failures in redundant VLSI systems:A survey[J].IEEE Transactions on Reliability, 2000, 49(3):285-295. doi: 10.1109/24.914545
    [3] KARPENKO M, SEPEHRI N.Quantitative fault tolerant control design for a leaking hydraulic actuator[J].Journal of Dynamic Systems, Measurement, and Control, 2010, 132(5):626-634. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce46bdd6d70b2b817a45cf2dae3fb83e
    [4] MAHULKAR V, ADAMS D E, DERRISO M.Adaptive fault tolerant control for hydraulic actuators[C]//Proceedings of the American Control Conference.Piscataway: IEEE Press, 2015: 2242-2247. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7171066
    [5] NAHIAN S A, TRUONG D Q, CHOWDHURY P.Modeling and fault tolerant control of an electro-hydraulic actuator[J].International Journal of Precision Engineering and Manufacturing, 2016, 17(10):1285-1297. doi: 10.1007/s12541-016-0153-2
    [6] ZHAO Z.Active fault tolerant control of an electro-hydraulic driven elevator based on robust adaptive observers[D].Montreal: Concordia University, 2010: 131-169. http://spectrum.library.concordia.ca/979392/
    [7] SHI C, WANG S P, WANG X J, et al.Active fault-tolerant control of dissimilar redundant actuation system based on performance degradation reference models[J].Journal of the Franklin Institute-Engineering and Applied Mathematics, 2017, 354(2):1087-1108. doi: 10.1016/j.jfranklin.2016.11.008
    [8] LI T, YANG T, CAO Y Y, et al.Disturbance-estimation based adaptive backstepping fault-tolerant synchronization control for a dual redundant hydraulic actuation system with internal leakage faults[J].IEEE Access, 2019, 7:73106-73119. doi: 10.1109/ACCESS.2019.2920415
    [9] SHI C, WANG X J, WANG S P, et al.Adaptive decoupling synchronous control of dissimilar redundant actuation system for large civil aircraft[J].Aerospace Science and Technology, 2015, 47:114-124. doi: 10.1016/j.ast.2015.09.012
    [10] WANG X J, SHI C, WANG S P.Extended state observer-based motion synchronization control for hybrid actuation system of large civil aircraft[J].International Journal of System Science, 2017, 48(10):2212-2222. doi: 10.1080/00207721.2017.1309592
    [11] 齐海涛, 滕雅婷.双余度电静液作动器力均衡控制[J].北京航天航空大学学报, 2017, 43(2):270-276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201702008

    QI H T, TENG Y T.Force equalization control for dual-redundancy electro-hydrostatic actuator[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2):270-276(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201702008
    [12] 付永领, 范殿梁, 李祝锋.非相似余度作动系统静态力均衡控制策略[J].北京航天航空大学学报, 2014, 40(11):1492-1499. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201411003

    FU Y L, FAN D L, LI Z F.Static force equalization for dissimilar redundant actuator system[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(11):1492-1499(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201411003
    [13] NA J, LI Y P, HUANG Y B, et al.Output feedback control of uncertain hydraulic servo systems[J].IEEE Transactions on Industrial Electronics, 2020, 67(1):490-500. doi: 10.1109/TIE.2019.2897545
    [14] YAO J Y, JIAO Z X, MA D W.Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping[J].IEEE Transactions on Industrial Electronics, 2014, 61(11):6285-6293. doi: 10.1109/TIE.2014.2304912
    [15] GUO W W, YAO J Y, YAO Z K, et al.Output feedback model predictive control of hydraulic systems with disturbances compensation[J].ISA Transactions, 2019, 88:216-224. doi: 10.1016/j.isatra.2018.12.007
    [16] JELALI M, KROLL A.Hydraulic servo systems-modeling, identification and control[M].Berlin:Springer, 2003:102-103.
    [17] LI T, YANG T, CAO Y Y, et al.Adaptive robust fault-tolerant synchronization control for a dual redundant hydraulic actuation system with common-mode fault[J].Mathematical Problems in Engineering, 2018, 2018:6570104.
    [18] YAO B, BU F, REEDY J, et al.Adaptive robust motion control of single-rod hydraulic actuators:Theory and experiments[J].IEEE-ASME Transactions on Mechatronics, 2000, 5(1):79-91. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=828592
    [19] YAO J, DENG W.Active disturbance rejection adaptive control of hydraulic servo systems[J].IEEE Transactions on Industrial Electronics, 2017, 64(10):8023-8032. doi: 10.1109/TIE.2017.2694382
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  535
  • HTML全文浏览量:  176
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-02
  • 录用日期:  2020-01-12
  • 网络出版日期:  2020-10-20

目录

    /

    返回文章
    返回
    常见问答