留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于形态学滤波的快速多通道图像EMD

胡建平 杜影 谢琪 王小超 张道畅

胡建平, 杜影, 谢琪, 等 . 基于形态学滤波的快速多通道图像EMD[J]. 北京航空航天大学学报, 2020, 46(11): 2007-2017. doi: 10.13700/j.bh.1001-5965.2020.0118
引用本文: 胡建平, 杜影, 谢琪, 等 . 基于形态学滤波的快速多通道图像EMD[J]. 北京航空航天大学学报, 2020, 46(11): 2007-2017. doi: 10.13700/j.bh.1001-5965.2020.0118
HU Jianping, DU Ying, XIE Qi, et al. A fast EMD for multi-channel images based on morphological filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2007-2017. doi: 10.13700/j.bh.1001-5965.2020.0118(in Chinese)
Citation: HU Jianping, DU Ying, XIE Qi, et al. A fast EMD for multi-channel images based on morphological filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2007-2017. doi: 10.13700/j.bh.1001-5965.2020.0118(in Chinese)

基于形态学滤波的快速多通道图像EMD

doi: 10.13700/j.bh.1001-5965.2020.0118
基金项目: 

国家自然科学基金 61672149

国家自然科学基金 61602341

国家自然科学基金 11901079

吉林省教育厅“十三五”科学技术研究规划项目 JJKH20190690KJ

北京航空航天大学虚拟现实技术与系统国家重点实验室开放基金 BUAA-VR-16KF-23

北京航空航天大学虚拟现实技术与系统国家重点实验室开放基金 BUAA-VR-17KF-04

详细信息
    作者简介:

    胡建平  男, 博士, 教授。主要研究方向:计算机图形学、图像处理

    王小超  男, 博士, 副教授。主要研究方向:计算几何、图形图像处理

    通讯作者:

    王小超, E-mail: wangxiaochao18@163.com

  • 中图分类号: TP391

A fast EMD for multi-channel images based on morphological filter

Funds: 

National Natural Science Foundation of China 61672149

National Natural Science Foundation of China 61602341

National Natural Science Foundation of China 11901079

"Thirteenth Five-Year Plan" Science and Technology Project of Education Department of Jilin Province JJKH20190690KJ

The Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University BUAA-VR-16KF-23

The Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University BUAA-VR-17KF-04

More Information
  • 摘要:

    为了提高多通道图像经验模态分解(EMD)方法分解的效率,提出了一种基于形态学滤波的快速多通道图像EMD方法。利用形态学膨胀和腐蚀滤波可以计算图像上下包络这一重要特性,实现了多通道图像EMD的快速计算,形态学滤波窗口大小由各通道图像的平均极值距离确定,将一幅多通道图像自适应分解为若干个尺度从细到粗的内蕴模态函数(IMF)图像和一个体现图像整体变化趋势的余量。大量的实验结果与对比显示,所提方法不但能够加快EMD方法分解的速度,而且也能够有效地对多通道图像进行自适应分解。通过在图像融合和图像水印中的应用及大量的实验比较,说明了所提方法能够方便快捷地投入到具体的图像处理任务中。

     

  • 图 1  一维正弦信号平均极值距离的计算

    Figure 1.  Computation of average extremum distance for a 1D sinusoidal signal

    图 2  本文实验的RGB彩色图像

    Figure 2.  RGB color images used in the experiments of this paper

    图 3  本文方法的分解结果

    Figure 3.  Decomposition results of proposed method

    图 4  Building图像分解比较

    Figure 4.  Decomposition comparison of Building image

    图 5  Horse图像分解比较

    Figure 5.  Decomposition comparison of Horse image

    图 6  图 2中图像分解量化比较

    Figure 6.  Decomposition quantitative comparison of images in Fig. 2

    图 7  Potted plant图像融合比较

    Figure 7.  Comparison of Potted plant image fusion

    图 8  Clock图像融合比较

    Figure 8.  Comparison of Clock image fusion

    图 9  Potted plant图像与Clock图像融合量化比较

    Figure 9.  Fusion quantitative comparisons of Potted plant image and Clock image

    图 10  不同攻击下Flower图像提取水印比较

    Figure 10.  Comparison of watermark extraction for Flower image under different attacks

    图 11  不同攻击下Lena图像提取水印比较

    Figure 11.  Comparison of watermark extraction for Lena image under different attacks

    表  1  不同多通道图像EMD方法生成第1个IMF图像所用时间

    Table  1.   Time comparison in generating the first IMF image among different EMD methods for multi-channel images

    图像名称 尺寸/像素 极大值点数目 极小值点数目 时间/s
    SMEMD CBEMD 本文方法
    Monkey 500×480 53 622 53 602 167.13 2.00 0.11
    Flower 512×480 33 037 32 502 167.06 1.19 0.09
    Lena 512×512 120 846 109 962 177.45 3.65 0.15
    Horse 600×450 58 088 104 171 180.35 2.79 0.12
    Building 816×616 53 731 52 584 436.50 2.24 0.21
    下载: 导出CSV
  • [1] HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London A, 1998, 454(1971):903-995. doi: 10.1098/rspa.1998.0193
    [2] HUANG N E, WU Z.A review on Hilbert-Huang transform:Method and its applications to geophysical studies[J].Reviews of Geophysics, 2008, 46(2):1-23. doi: 10.1029/2007RG000228
    [3] CHEN C, CHIANG W, LIU T, et al.Detecting the sensitivity of structural damage based on the Hilbert-Huang transform approach[J].Engineering Computations, 2010, 27(7):799-818. doi: 10.1108/02644401011073665
    [4] GEMMRICH J R, FARMER D M.Near surface turbulence in the presence of breaking waves[J].Journal of Physical Oceanography, 2004, 34(5):1067-1086. doi: 10.1175/1520-0485(2004)034<1067:NTITPO>2.0.CO;2
    [5] 杨恭勇, 周小龙, 李家飞, 等.基于改进EMD频率族分离法的齿轮磨损故障诊断[J].东北电力大学学报, 2017, 37(5):39-43. http://www.cqvip.com/QK/98139A/20175/673381143.html

    YANG G Y, ZHOU X L, LI J F, et al.Fault diagnosis of gear wear based on improved EMD frequency family separation method[J].Journal of Northeast Electric Power University, 2017, 37(5):39-43(in Chinese). http://www.cqvip.com/QK/98139A/20175/673381143.html
    [6] DI C, YANG X, WANG X.A four-stage hybrid model for hydrological time series forecasting[J].Plos One, 2014, 9(8):e104663. doi: 10.1371/journal.pone.0104663
    [7] 肖白, 房龙江, 李介夫, 等.空间负荷预测中确定元胞负荷最大值的经验模态分解方法[J].东北电力大学学报, 2018, 38(3):12-18. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DBDL201803003

    XIAO B, FANG L J, LI J F, et al.An empirical mode decomposition method for determining the maximum cell load in space load prediction[J].Journal of Northeast Electric Power University, 2018, 38(3):12-18(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DBDL201803003
    [8] LONG S R.Use of the empirical mode decomposition and Hilbert-Huang transform in image analysis[C]//World Multi-conference on Systemics, Cybernetics and Informatics, 2001: 67-71.
    [9] NUNES J C, BOUAOUNE Y, DELECHELLE E, et al.Image analysis by bidimensional empirical mode decomposition[J].Image and Vision Computing, 2003, 21(12):1019-1026. doi: 10.1016/S0262-8856(03)00094-5
    [10] NUNES J C, GUYOT S, DELECHELLE E, et al.Texture analysis based on local analysis of the bidimensional empirical mode decomposition[J].Machine Vision and Applications, 2005, 16(3):177-188. doi: 10.1007/s00138-004-0170-5
    [11] LINDERHED A.2D empirical mode decompositions in the spirit of image compression[J].Wavelet and Independent Component Analysis Applications, 2002, 4738(7):1-8. http://www.sciencedirect.com/science?_ob=ArticleURL&md5=39a3d3386085d5f413002f85da48c5df&_udi=B82Y6-4P5RTMW-4&_user=10&_coverDate=07%2F31%2F2007&_rdoc=4&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%2333050%232007%239997
    [12] DAMERVAL C, MEIGNEN S, PERRIER V.A fast algorithm for bidimensional EMD[J].IEEE Signal Processing Letters, 2005, 12(10):701-704. doi: 10.1109/LSP.2005.855548
    [13] XU G, WANG X, XU X.Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures[J].Pattern Recognition, 2009, 42(5):718-734. doi: 10.1016/j.patcog.2008.09.017
    [14] HUANG B Q, KUNOTH A.An optimization based empirical mode decomposition scheme[J].Journal of Computational and Applied Mathematics, 2013, 240:174-183. doi: 10.1016/j.cam.2012.07.012
    [15] COLOMINAS M A, HUMEAU-HEURTIER A, SCHLOTTHAUE G.Orientation-independent empirical mode decomposition for images based on unconstrained optimization[J].IEEE Transactions on Image Processing, 2016, 25(5):2288-2297. doi: 10.1109/TIP.2016.2541959
    [16] BHUIYAN S M A, ADHAMI R R, KHAN J F.Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation[J].EURASIP Journal on Advances in Signal Processing, 2008, 2008(164):1-18. doi: 10.1155/2008/728356
    [17] CHEN C Y, GUO S M, CHANG W S, et al.An improved bidimensional empirical mode decomposition:A mean approach for fast decomposition[J].Signal Processing, 2014, 98(5):344-358. doi: 10.1016/j.sigpro.2013.11.034
    [18] TRUSIAK M, WIELGUS M, PATORSKI K.Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition[J].Optics and Lasers in Engineering, 2014, 52(1):230-240. http://www.sciencedirect.com/science/article/pii/S0143816613001899
    [19] 胡建平, 李玲, 谢琪, 等.多通道图像EMD及应用[J].计算机工程与应用, 2019, 55(5):1-10. http://www.cqvip.com/QK/91690X/20195/7001356343.html

    HU J P, LI L, XIE Q, et al.Multi-channel image EMD and its application[J].Computer Engineering and Applications, 2019, 55(5):1-10(in Chinese). http://www.cqvip.com/QK/91690X/20195/7001356343.html
    [20] BHUIYAN S M A, KHAN J F, ALAM M S.Color image trend adjustment using a color bidimensional empirical mode decomposition method[J].Journal of Electronic Imaging, 2012, 21(3):234-242. http://spie.org/x648.html?product_id=1001035
    [21] 阮秋琦, 阮宇智.数字图像处理[M].2版.北京:电子工业出版社, 2006:440-448.

    RUAN Q Q, RUAN Y Z.Digital image processing[M].2nd ed.Beijing:Electronic Industry Press, 2006:440-448(in Chinese).
    [22] 赵小川, 赵斌.MATLAB数字图像处理[M].北京:北京航空航天大学出版社, 2015.

    ZHAO X C, ZHAO B.MATLAB digital image processing[M].Beijing:Beihang University Press, 2015(in Chinese).
    [23] NAIDU V P S.Image fusion technique using multi-resolution singular value decomposition[J].Defence Science Journal, 2011, 61(5):479-484. doi: 10.14429/dsj.61.705
    [24] LEWIS J J, ROBERT J O C, NIKOLOV S G, et al.Pixel- and region-based image fusion with complex wavelets[J].Information Fusion, 2007, 8(2):119-130. doi: 10.1016/j.inffus.2005.09.006
    [25] LI S, KANG X, HU J.Image fusion with guided filtering[J].IEEE Transactions on Image Processing, 2013, 22(7):2864-2875. doi: 10.1109/TIP.2013.2244222
    [26] AMIN-NAJI M, RANJBAR-NOIEY P, AGHAGOLZADEH A.Multi-focus image fusion using singular value decomposition in DCT domain[C]//10th Iranian Conference on Machine Vision and Image Processing, 2017: 22-25.
    [27] AMIN-NAJI M, AGHAGOLZADEH A.Multi-focus image fusion in DCT domain using variance and energy of Laplacian and correlation coefficient for visual sensor networks[J].Journal of AI and Data Mining, 2018, 6(2):233-250. http://jad.shahroodut.ac.ir/article_1065.html
    [28] 王小超, 胡坤, 胡建平.结合BEMD与Hilbert曲线的重复嵌入图像水印算法[J].计算机辅助设计与图形学学报, 2020, 32(2):289-296. http://www.cnki.com.cn/Article/CJFDTotal-JSJF202002014.htm

    WANG X C, HU K, HU J P.Repeated embedding image watermarking algorithm combining BEMD and Hilbert curves[J].Journal of Computer Aided Design & Computer Graphics, 2020, 32(2):289-296(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JSJF202002014.htm
    [29] VAN SCHYNDEL R G, TIRKEL A Z, OSBORNE C F.A digital watermark[C]//Proceedings of IEEE International Conference on Image Processing.Piscataway: IEEE Press, 1994: 86-90.
    [30] SINGH S P, BHATNAGAR G.A new robust watermarking system in integer DCT domain[J].Journal of Visual Communication and Image Representation, 2018, 53:86-101. doi: 10.1016/j.jvcir.2018.03.006
    [31] 叶天语.DWT-SVD域全盲自嵌入鲁棒量化水印算法[J].中国图象图形学报, 2012, 17(6):644-650. http://d.wanfangdata.com.cn/periodical/zgtxtxxb-a201206005

    YE T Y.Perfectly blind self-embedding robust quantization based watermarking scheme in DWT-SVD domain[J].Journal of Image and Graphics, 2012, 17(6):644-650(in Chinese). http://d.wanfangdata.com.cn/periodical/zgtxtxxb-a201206005
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  757
  • HTML全文浏览量:  196
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-01
  • 录用日期:  2020-06-05
  • 网络出版日期:  2020-11-20

目录

    /

    返回文章
    返回
    常见问答