留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四旋翼无人机执行器可重构性量化评价方法研究

申富媛 李炜

申富媛, 李炜. 四旋翼无人机执行器可重构性量化评价方法研究[J]. 北京航空航天大学学报, 2020, 46(11): 2077-2086. doi: 10.13700/j.bh.1001-5965.2019.0568
引用本文: 申富媛, 李炜. 四旋翼无人机执行器可重构性量化评价方法研究[J]. 北京航空航天大学学报, 2020, 46(11): 2077-2086. doi: 10.13700/j.bh.1001-5965.2019.0568
SHEN Fuyuan, LI Wei. Quantitative reconfigurability evaluation method of actuator for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2077-2086. doi: 10.13700/j.bh.1001-5965.2019.0568(in Chinese)
Citation: SHEN Fuyuan, LI Wei. Quantitative reconfigurability evaluation method of actuator for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2077-2086. doi: 10.13700/j.bh.1001-5965.2019.0568(in Chinese)

四旋翼无人机执行器可重构性量化评价方法研究

doi: 10.13700/j.bh.1001-5965.2019.0568
基金项目: 

国家自然科学基金 61763027

详细信息
    作者简介:

    申富媛  女, 博士研究生, 讲师。主要研究方向:动态系统故障诊断与容错控制、故障可重构性等

    李炜  女, 硕士, 教授。主要研究方向:动态系统故障诊断与容错控制、故障预测与健康评估等

    通讯作者:

    李炜, E-mail: liwei@lut.edu.cn

  • 中图分类号: TP277

Quantitative reconfigurability evaluation method of actuator for quadrotor UAV

Funds: 

National Natural Science Foundation of China 61763027

More Information
  • 摘要:

    随着对系统安全性和可靠性要求的不断提高,故障系统的自主恢复能力即系统的可重构性受到高度关注,然而现有对于控制系统可重构性量化评价的方法主要针对线性系统,因此以具有强耦合、欠驱动、强非线性的四旋翼无人机(quadrotor UAV)为被控对象,提出了一种基于双滑模面鲁棒观测器与马氏距离结合的非线性系统可重构性量化评价方法。首先,在四旋翼无人机非线性模型的基础上,设计了具有对扰动和故障均不敏感的双滑模面鲁棒观测器,用于实现对系统状态的准确估计;其次,在执行器饱和及系统状态误差指标双约束条件下,采用基于马氏距离的相似度法,对非线性系统可重构性进行量化评价;最后,通过四旋翼无人机仿真实验验证了所提方法的有效性。结果表明,所提方法能够真实反映不同故障程度下系统的可重构性量化水平,为非线性故障系统控制策略调整补偿提供了重要依据。

     

  • 图 1  quadrotor UAV结构

    Figure 1.  Quadrotor UAV structure

    图 2  执行器无故障

    Figure 2.  Failure-free actuator

    图 3  执行器发生故障

    Figure 3.  Actuator with failure

    图 4  调整不连续项

    Figure 4.  Discontinuous term adjustment

    图 5  双滑模面观测器

    Figure 5.  Double sliding surface observer

    表  1  quadrotor UAV物理参数

    Table  1.   Physical parameters of quadrotor UAV

    参数 数值
    质量m/kg 1.4
    重力加速度g/(m·s-2) 9.8
    xyz轴的转动惯量
    I=[Ixx, Iyy, Izz]/(kg·m2)
    I=diag[0.03, 0.03, 0.04]
    螺旋桨的惯性矩Ir/(kg·s2) 0.002
    阻力系数kdi(i=1, 2, …, 6) kdi=0.01(i=1, 2, …, 6)
    初始状态
    x=[0,0,0,0,0,0,0,0]
    期望状态
    xd=[3, 0.5, 0.2, 0.3, 0, 0, 0, 0]
    下载: 导出CSV

    表  2  执行器故障可重构性量化评价

    Table  2.   Quantitative reconfigurability evaluation of actuator fault

    单一故障 评价结果 多故障 评价结果
    [5,0,0,0] 0.906 8 [5,0,1,0] 0.905 3
    [10,0,0,0] 0.871 7 [10,0,1,0] 0.869 0
    [15,0,0,0] 0.834 7 [15,0,1,0] 0.832 1
    [20,0,0,0] 0.796 8 [20,0,1,0] 0.797 8
    [25,0,0,0] 0.725 9 [25,0,1,0] 0.723 4
    下载: 导出CSV
  • [1] 宿敬亚, 樊鹏辉, 蔡开元.四旋翼飞行器的非线性PID姿态控制[J].北京航空航天大学学报, 2011, 37(9):1054-1058. https://bhxb.buaa.edu.cn/CN/abstract/abstract12060.shtml

    SU J Y, FAN P H, CAI K Y.Attitude control of quadrotor aircraft via nonlinear PID[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9):1054-1058(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12060.shtml
    [2] MOFID O, MOBAYEN S.Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties[J].ISA Transactions, 2018, 72:1-14. doi: 10.1016/j.isatra.2017.11.010
    [3] 周东华, DING X.容错控制理论及其应用[J].自动化学报, 2000, 26(6):788-797. http://www.cnki.com.cn/Article/CJFDTotal-MOTO200006012.htm

    ZHOU D H, DING X.Theory and application of fault tolerant control[J].Acta Automatica Sinica, 2000, 26(6):788-797(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-MOTO200006012.htm
    [4] 王宏, 柴天佑, 丁进良, 等.数据驱动的故障诊断与容错控制:进展与可能的新方向[J].自动化学报, 2009, 35(6):739-747. http://d.wanfangdata.com.cn/Periodical_zdhxb200906013.aspx

    WANG H, CHAI T Y, DING J L, et al.Data driven fault diagnosis and fault tolerant control:Some advances and possible new directions[J].Acta Automatica Sinica, 2009, 35(6):739-747(in Chinese). http://d.wanfangdata.com.cn/Periodical_zdhxb200906013.aspx
    [5] YIN S, LUO H, DING S X.Real-time implementation of fault-tolerant control systems with performance optimization[J].IEEE Transactions on Industrial Electronics, 2014, 61(5):2402-2411. doi: 10.1109/TIE.2013.2273477
    [6] ZHANG Y, JIANG J.Bibliographical review on reconfigurable fault-tolerant control systems[J].Annual Reviews in Control, 2008, 32(2):229-252. doi: 10.1016/j.arcontrol.2008.03.008
    [7] 李晗, 萧德云.基于数据驱动的故障诊断方法综述[J].控制与决策, 2011, 26(1):1-9. http://d.wanfangdata.com.cn/Periodical/kzyjc201101001

    LI H, XIAO D Y.Survey on data driven fault diadnosis methods[J].Control and Decision, 2011, 26(1):1-9(in Chinese). http://d.wanfangdata.com.cn/Periodical/kzyjc201101001
    [8] WANG B, YU X, MU L X, et al.Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and external disturbances[J].Mechanical Systems and Signal Processing, 2019, 120:727-743. doi: 10.1016/j.ymssp.2018.11.001
    [9] WU N E, ZHOU K, SALOMON G.Control reconfigurability of linear time-invariant systems[J].Automatica, 2000, 36(11):1767-1771. doi: 10.1016/S0005-1098(00)00080-7
    [10] MVLLER P C, WEBER H I.Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems[J].Automatica, 1972, 8(3):237-246. doi: 10.1016/0005-1098(72)90044-1
    [11] FREII C W, KRAUS F J, BLANKET M.Recoverability viewed as a system property[C]//European Control Conference, 1999: 2197-2202.
    [12] 徐赫屿, 王大轶, 李文博.卫星姿态控制系统的可重构性量化评价方法研究[J].航天控制, 2016, 34(4):29-35. http://www.cnki.com.cn/Article/CJFDTotal-HTKZ201604005.htm

    XU H Y, WANG D Y, LI W B.A reconfigurability evaluation method for satellite control system based on Gramian matrix[J].Aerospace Control, 2016, 34(4):29-35(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HTKZ201604005.htm
    [13] HAMDAN A M A, NAYFEH A H.Measures of modal controllability and observability for first and second order linear systems[J].Journal of Guidance, Control, and Dynamics, 1989, 12(3):421-428. doi: 10.2514/3.20424
    [14] SCHMITENDORF W E.An exact expression for computing the degree of controllability[J].Journal of Guidance, Control, and Dynamics, 1984, 7(4):502-504. doi: 10.2514/3.19886
    [15] 杜光勋, 全权.输入受限系统的可控度及其在飞行控制中的应用[J].系统科学与数学, 2014, 34(12):1578-1594. http://d.wanfangdata.com.cn/Periodical/xtkxysx-zw201412015

    DU G X, QUAN Q.Degree of controllability and its application in aircraft flight control[J].Journal of Systems Science and Mathematical Sciences, 2014, 34(12):1578-1594(in Chinese). http://d.wanfangdata.com.cn/Periodical/xtkxysx-zw201412015
    [16] 杨荟憭, 姜斌, 张柯.四旋翼直升机姿态系统的直接自修复控制[J].控制理论与应用, 2014, 31(8):1053-1060. http://d.wanfangdata.com.cn/Periodical/kzllyyy201408008

    YANG H L, JIANG B, ZHANG K.Direct self-repairing control for four-rotor helicopter attitude systems[J].Control Theory & Applications, 2014, 31(8):1053-1060(in Chinese). http://d.wanfangdata.com.cn/Periodical/kzllyyy201408008
    [17] JIANG Z P, WANG Y.A generalization of the nonlinear small-gain theorem for large-scale complex systems[C]//Proceedings of the 7th World Congress on Intelligent Control and Automation.Piscataway: IEEE Press, 2008: 1188-1193.
    [18] ZHAO Y, SONG H, QIU H, et al.Control reconfigurability of nonlinear system based on control redundancy[C]//IEEE 10th International Conference on Industrial Informatics.Piscataway: IEEE Press, 2012: 815-820.
    [19] GAO Z W, CECATI C, DING S X.A survey of fault diagnosis and fault-tolerant techniques-Part Ⅱ:Fault diagnosis with knowledge-based and hybrid/active approaches[J].IEEE Transactions on Industrial Electronics, 2015, 62(6):3768-3774. http://ieeexplore.ieee.org/document/7069265/
    [20] 何静.基于观测器的非线性系统鲁棒故障检测与重构方法研究[D].长沙: 国防科技大学, 2009: 13-21.

    HE J.On observer-based robust fault detection and reconstruction for nonlinear system[D].Changsha: National University of Defense Technology, 2009: 13-21(in Chinese).
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  576
  • HTML全文浏览量:  96
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-02
  • 录用日期:  2020-02-03
  • 网络出版日期:  2020-11-20

目录

    /

    返回文章
    返回
    常见问答