留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

封闭式仿生螺旋缠绕软体夹持器的设计与研究

曹毅 顾苏程 翟明浩 王保兴 邓小龙

曹毅, 顾苏程, 翟明浩, 等 . 封闭式仿生螺旋缠绕软体夹持器的设计与研究[J]. 北京航空航天大学学报, 2021, 47(1): 15-23. doi: 10.13700/j.bh.1001-5965.2020.0009
引用本文: 曹毅, 顾苏程, 翟明浩, 等 . 封闭式仿生螺旋缠绕软体夹持器的设计与研究[J]. 北京航空航天大学学报, 2021, 47(1): 15-23. doi: 10.13700/j.bh.1001-5965.2020.0009
CAO Yi, GU Sucheng, ZHAI Minghao, et al. Design and research of closed bionic spiral wound soft gripper[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 15-23. doi: 10.13700/j.bh.1001-5965.2020.0009(in Chinese)
Citation: CAO Yi, GU Sucheng, ZHAI Minghao, et al. Design and research of closed bionic spiral wound soft gripper[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 15-23. doi: 10.13700/j.bh.1001-5965.2020.0009(in Chinese)

封闭式仿生螺旋缠绕软体夹持器的设计与研究

doi: 10.13700/j.bh.1001-5965.2020.0009
基金项目: 

江苏省"六大人才高峰"计划 ZBZZ-012

高等学校学科创新引智计划 B18027

江苏省高校优秀科技创新团队基金 2019SJK07

详细信息
    作者简介:

    曹毅  男, 博士, 教授, 硕士生导师。主要研究方向:软体机器人、并联机器人、混联机器人、柔性机器人

    顾苏程  男, 硕士研究生。主要研究方向:软体机器人

    翟明浩  男, 硕士研究生。主要研究方向:深度学习

    王保兴  男, 硕士研究生。主要研究方向:柔性机构学

    邓小龙  男, 博士, 教授。主要研究方向:软体机器人、电气自动化技术、机电一体化技术、物联网技术等

    通讯作者:

    曹毅, E-mail: caoyi@jiangnan.edu.cn

  • 中图分类号: TP241

Design and research of closed bionic spiral wound soft gripper

Funds: 

The Six Talent Peaks Project in Jiangsu Province ZBZZ-012

Overseas Expertise Introduction Project for Discipline Innovation B18027

Science and Technology Innovation Team Fund of Jiangsu Province 2019SJK07

More Information
  • 摘要:

    针对目前软体夹持器缺乏螺旋缠绕变形的理论研究及传统多指软体夹持器夹持力不足的问题,开展了针对纤维增强结构的仿生软体夹持器螺旋缠绕变形特性的研究,提出了一种新的封闭式抓取方式。首先,设计了仿生软体夹持器,该夹持器由软体夹持装置、软体夹持套、紧固套及连接装置组成。其次,基于Mooney-Rivlin模型建立了驱动压强与驱动器螺旋缠绕变形后端面扭转角度的非线性数学模型,并对夹持器封闭式抓取的末端闭合特性进行了分析。然后,开展了单元驱动器螺旋缠绕变形的仿真及实验,结果证明了理论模型的正确性。最后,进行了仿生软体夹持器封闭式抓取实验。结果表明:封闭式仿生软体夹持器具有较大的负载能力及良好的目标适应性。

     

  • 图 1  蛇缠绕示意图

    Figure 1.  Schematic diagram of a snake winding

    图 2  封闭式仿生螺旋缠绕软体夹持器结构

    Figure 2.  Structure of closed bionic spiral wound soft gripper

    图 3  单元螺旋缠绕驱动器

    Figure 3.  Unit spiral wound actuator

    图 4  螺旋缠绕驱动器结构变形及受力示意图

    Figure 4.  Structural deformation and force diagram of spiral wound actuator

    图 5  拉伸实验

    Figure 5.  Stretching test

    图 6  单元驱动器变形状态对比

    Figure 6.  Comparison of deformation state of unit actuator

    图 7  螺旋缠绕驱动器视图

    Figure 7.  Schematic diagram of spiral wound actuator

    图 8  驱动器局部路径几何关系

    Figure 8.  Local path geometry diagram of actuator

    图 9  单元螺旋缠绕驱动器仿真示意图

    Figure 9.  Schematic diagram of unit spiral winding simulation of actuator

    图 10  实验试件制备流程

    Figure 10.  Flowchart of manufacturing for experimental sample

    图 11  硬件实验平台

    Figure 11.  Hardware experimental platform

    图 12  单元驱动器螺旋缠绕示意图

    Figure 12.  Schematic diagram of unit spiral winding of actuator

    图 13  驱动器端面扭转角相对误差对比

    Figure 13.  Torsion angle relative error comparison of actuator end face

    图 14  螺旋缠绕驱动器抓取性能实验

    Figure 14.  Grabbing experiment of spiral wound actuator

    图 15  软体夹持器充气前后对比

    Figure 15.  Comparison of soft gripper before and after inflation

    图 16  软体夹持器多目标抓取能力

    Figure 16.  Multi-target grabbing ability of soft gripper

    表  1  单元螺旋缠绕驱动器结构参数

    Table  1.   Unit spiral wound actuator structure parameters

    参数 数值
    单元驱动器长度L/mm 110
    单元驱动器空腔半径r/mm 6
    单元驱动器半径R/mm 10
    单元驱动器偏心距e1/mm 3
    螺纹线圈缠绕角度α/(°) 3
    下载: 导出CSV

    表  2  螺旋缠绕驱动器末端端面扭转角

    Table  2.   End face torsion angle of spiral wound actuator

    P/kPa 端面扭转角/(°)
    理论值 仿真值 实验值
    0 0 0 0
    10 19.97 20.6 18.5
    20 39.51 40.3 37
    30 55.25 58.4 50.6
    40 70.86 75.8 68.4
    50 85.73 92.2 79.5
    60 99.42 107.1 96.5
    70 112.74 122.8 109.6
    下载: 导出CSV
  • [1] GRUNERT K G.Food quality and safety:Consumer perception and demand[J].European Review of Agricultural Economics, 2005, 32(3):369-391. doi: 10.1093/eurrag/jbi011
    [2] FANTONI G, SANTOCHI M, DINI G, et al.Grasping devices and methods in automated production processes[J].CIRP Annals-Manufacturing Technology, 2014, 63(2):679-701. doi: 10.1016/j.cirp.2014.05.006
    [3] TAI K, EL-SAYED A R, SHAHRIARI M, et al.State of the art robotic grippers and applications[J].Robotics, 2016, 5(2):1-20. http://www.researchgate.net/publication/304037147_State_of_the_Art_Robotic_Grippers_and_Applications
    [4] 董红兵.一种充气式软体全向弯曲模块关键技术研究[D].哈尔滨: 哈尔滨工业大学, 2016.

    DONG H B.Research on key technologies of a pneumatic soft omnidirectional bending module[D].Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [5] YAP H, KAMALDIN N, LIM J, et al.A magnetic resonance compatible soft wearable robotic glove for hand rehabilitation and brain imaging[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 6(25):782-793. http://ieeexplore.ieee.org/document/7552551/
    [6] NORITSUGU T.Development of pneumatic rotary soft actuator made of silicon rubber[J].Journal of Robotics and Mechatronics, 2001, 1:17-22. http://ci.nii.ac.jp/naid/80015453500
    [7] 徐淼鑫.气压驱动软体夹持装置研究[D].南京: 南京理工大学, 2015.

    XU M X.Research on pneumatic driving software clamping device[D].Nanjing: Nanjing University of Science and Technology, 2015(in Chinese).
    [8] 费燕琼, 庞武, 于文博.气压驱动软体机器人运动研究[J].机械工程学报, 2017, 53(13):14-18.

    FEI Y Q, PANG W, YU W B.Study on motion of air-driven soft robot[J].Journal of Mechanical Engineering, 2017, 53(13):14-18(in Chinese).
    [9] DEIMEL R, BROCK O.A novel type of compliant and underactuated robotic hand for dexterous grasping[J].The International Journal of Robotics Research, 2015, 35(1-3):161-185. doi: 10.1177/0278364915592961
    [10] HAO Y F, GONG Z, XIE Z, et al.Universal soft pneumatic robotic gripper with variable effective length[C]//Control Conference, 2016: 6109-6114.
    [11] LIU A J, NAGEL S R.Nonlinear dynamics:Jamming is not just cool any more[J].Nature, 1998, 396(6706):21-22. doi: 10.1038/23819
    [12] PEDRO P, ANANDA C, RAFAEL P B, et al.Closed structure soft robotic gripper[C]//IEEE International Conference on Soft Robotics.Piscataway: IEEE Press, 2018: 66-70.
    [13] WU P C, LIN N, LEI T, et al.A new grasping mode based on a sucked-type underactuated hand[J].Chinese Journal of Mechanical Engineering, 2018, 31(6):25-33. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb-e201806002
    [14] ILIEVSKI F, MAZZEO A D, SHEPHERD R F, et al.Soft robotics for chemists[J].Angewandte Chemie, 2011, 123(8):1930-1935. doi: 10.1002/ange.201006464
    [15] 王宁扬, 孙昊, 姜皓, 等.一种基于蜂巢气动网络的软体夹持器抓取策略研究[J].机器人, 2016, 38(3):371-384.

    WANG N Y, SUN H, JIANG H, et al.On grasp strategy of honeycomb pneuNets soft gripper[J].Robot, 2016, 38(3):371-384(in Chinese).
    [16] 郭钟华, 李小宁, 林浩鹏.基于主动包络和负压塑形的软体适形夹持器[J].机械工程学报, 2019, 4(23):1-7.

    GUO Z H, LI X N, LIN H P.Soft conformal gripper based on active envelope and negative pressure shaping[J].Journal of Mechanical Engineering, 2019, 4(23):1-7(in Chinese).
    [17] BROWN E, RODENBER N, AMEND J, et al.Universal robotic gripper based on the jamming of granular material[J].Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44):18809-18814. doi: 10.1073/pnas.1003250107
    [18] LI H, YAO J T, ZHOU P C, et al.High-load soft grippers based on bionic winding effects[J].Soft Robotics, 2019, 6(2):276-288. doi: 10.1089/soro.2018.0024
    [19] 顾苏程, 王保兴, 刘俊辰, 等.纤维增强型软体夹持器变形及末端接触力[J].北京航空航天大学学报, 2020, 46(2):447-456. doi: 10.13700/j.bh.1001-5965.2019.0251

    GU S C, WANG B X, LIU J C, et al.The research on the deformation mechanism and contact force of the fiber-reinforced soft gripper[J].Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2):447-456(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0251
    [20] TOSHIMICHI B, YOSHIHIDE K, TETSUSHI K, et al.A snake robot propelling inside of a pipe with helical rolling motion[C]//SICE Annual Conference, 2010: 1471-1487.
    [21] GALLOWAY K C, BECKER K P, PHILLIPS B, et al.Soft robotic grippers for biological sampling on deep reefs[J].Soft Robotics, 2016, 3(1):23-33. doi: 10.1089/soro.2015.0019
    [22] CONNOLLY F, POLYGERINOS P, WALSH C J, et al.Mechanical programming of soft actuators by varying fiber angle[J].Soft Robotics, 2015, 2(1):26-32. doi: 10.1089/soro.2015.0001
    [23] ELSAYED Y A, LEKAKOU C.Finite element analysis mad design optimization of a pneumatically actuating silicone module for robotic surgery applications[J].Soft Robotics, 2014, 1(4):255-262. doi: 10.1089/soro.2014.0016
    [24] 黄建龙, 解广娟, 刘正伟.基于Mooney-Rivlin模型和Yeoh模型的超弹性橡胶材料有限元分析[J].橡胶工业, 2008, 55(8):467-471. doi: 10.3969/j.issn.1000-890X.2008.08.004

    HUANG J L, XIE G J, LIU Z W.The finite element analysis of super-elastic rubber material based on Mooney-Rivlin model and Yeoh model[J].China Rubber Industry, 2008, 55(8):467-471(in Chinese). doi: 10.3969/j.issn.1000-890X.2008.08.004
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  563
  • HTML全文浏览量:  60
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-09
  • 录用日期:  2020-02-07
  • 网络出版日期:  2021-01-20

目录

    /

    返回文章
    返回
    常见问答