留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

升力体式浮升混合飞艇多学科设计优化

孟军辉 李沫宁 马诺 刘莉

孟军辉, 李沫宁, 马诺, 等 . 升力体式浮升混合飞艇多学科设计优化[J]. 北京航空航天大学学报, 2021, 47(1): 72-83. doi: 10.13700/j.bh.1001-5965.2020.0012
引用本文: 孟军辉, 李沫宁, 马诺, 等 . 升力体式浮升混合飞艇多学科设计优化[J]. 北京航空航天大学学报, 2021, 47(1): 72-83. doi: 10.13700/j.bh.1001-5965.2020.0012
MENG Junhui, LI Moning, MA Nuo, et al. Multidisciplinary design optimization of a lift-type hybrid airship[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 72-83. doi: 10.13700/j.bh.1001-5965.2020.0012(in Chinese)
Citation: MENG Junhui, LI Moning, MA Nuo, et al. Multidisciplinary design optimization of a lift-type hybrid airship[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 72-83. doi: 10.13700/j.bh.1001-5965.2020.0012(in Chinese)

升力体式浮升混合飞艇多学科设计优化

doi: 10.13700/j.bh.1001-5965.2020.0012
基金项目: 

国家自然科学基金 11902029

航天器设计优化与动态模拟技术教育部重点实验室(北京航空航天大学)开放基金 2019KF004

详细信息
    作者简介:

    孟军辉  男, 博士, 副研究员, 硕士生导师。主要研究方向:飞行器总体设计及力学性能分析

    李沫宁  女, 硕士研究生。主要研究方向:柔性充气无人系统设计

    刘莉  女, 博士, 教授, 博士生导师。主要研究方向:飞行器总体设计

    通讯作者:

    孟军辉, E-mail: mengjh@bit.edu.cn

  • 中图分类号: V221

Multidisciplinary design optimization of a lift-type hybrid airship

Funds: 

National Natural Science Foundation of China 11902029

Key Laboratory of Spacecraft Design Optimization and Dynamic Simulation Technologies (Beihang University), Ministry of Education, China 2019KF004

More Information
  • 摘要:

    升力体式混合飞艇是全球远距离大载重运输的重要选择,随着全球贸易的发展,逐渐成为国内外的研究热点。作为航空宇航技术、新能源技术和高性能材料技术相结合的新概念飞行器,混合飞艇设计过程需对多个学科进行综合考虑和优化。为了将多学科设计优化(MDO)方法引入到混合飞艇的总体设计中,将其分解为能源子系统、气动和推进子系统以及结构和重量子系统。在子系统模型构建的基础上,提出具有自适应能力的基于响应面的并行子空间优化(CSSO-RS)算法,将重量平衡和能量平衡作为实现远距离载重运输的约束条件,并提出爬升、日间巡航、滑翔和夜间巡航的多阶段任务剖面,以充分利用太阳能电池、燃料电池和锂电池的优势,实现混合飞艇的最优化设计。优化结果表明:具有自适应能力的优化算法在精确度和计算效率上均有明显的优势,同时重量分配的结果也为混合飞艇结构轻量化设计和能源系统设计提出了更高的要求。

     

  • 图 1  升力体式混合飞艇概念设计

    Figure 1.  Concept design drawing of lift-type hybrid airship

    图 2  混合飞艇载重运输任务剖面图

    Figure 2.  Mission profile of hybrid airship for loading transportation

    图 3  混合飞艇几何外形设计

    Figure 3.  Geometry design of hybrid airship

    图 4  能源子系统示意图

    Figure 4.  Schematic diagram of energy subsystem

    图 5  任意斜面接收太阳光照示意

    Figure 5.  Position of the sun relative to an arbitrarily oriented plane

    图 6  混合飞艇太阳能电池离散化示意

    Figure 6.  Discretization of solar array of hybrid airship

    图 7  混合飞艇等效传统旋成体飞艇示意

    Figure 7.  Equivalent of hybrid airship and conventional rotated airship

    图 8  自适应CSSO-RS算法框架

    Figure 8.  Framework of adaptive CSSO-RS algorithm

    图 9  混合飞艇系统分析

    Figure 9.  System analysis of hybrid airship

    图 10  设计优化迭代收敛过程对比

    Figure 10.  Comparison of design optimization iterativeconvergence process

    图 11  迭代收敛过程重量平衡对于近似模型的选择

    Figure 11.  Selection of approximate model for weight balance in iterative convergence process

    图 12  迭代收敛过程能量平衡对于近似模型的选择

    Figure 12.  Selection of approximate model for energy balance in iterative convergence process

    图 13  混合飞艇飞行高度和速度变化

    Figure 13.  Flight altitude and speed curves of hybrid airship

    图 14  混合飞艇各子系统重量分配

    Figure 14.  Weight distribution among subsystems of hybrid airship

    图 15  混合飞艇能源子系统重量分配

    Figure 15.  Weight distribution among energy subsystem of hybrid airship

    表  1  混合飞艇优化初始参数

    Table  1.   Initial parameters of hybrid airship optimization

    初始参数 数值
    巡航速度v/(m·s-1) 20
    囊体材料面密度ρenv/(kg·m-2) 0.2
    太阳能电池面密度ρsa/(kg·m-2) 0.3
    载荷重量mpayload/kg 1 000
    燃料电池能量密度ρESS/(Wh·kg-1) 1 000
    电机和螺旋桨功率质量比SPprop/(W·kg-1) 440
    推进系统效率ηprop 0.72
    燃料电池放电效率ηESS 0.55
    下载: 导出CSV

    表  2  优化结果对比

    Table  2.   Comparison of optimization results

    参数 数值
    传统CSSO-RS算法 自适应CSSO-RS算法
    等效飞艇长半轴a/m 51.23 48.75
    太阳能电池起点位置坐标xs/m 22.35 18.11
    混合飞艇体积V/m3 129 797.74 128 009.89
    混合飞艇总质量mtotal/kg 22 551.23 21 698.86
    燃料电池质量mESS/kg 4 948.79 4 019.28
    太阳能电池质量msa/kg 1 487.81 1 554.63
    锂电池质量mLi/kg 2 537.72 3 019.44
    能量供给Qsup/kWh 4 968.84 4 642.65
    等效飞艇短半轴b/m 19.5 19.5
    太阳能电池结束位置坐标xe/m 96.32 94.68
    太阳能电池面积Asa/m2 3 796.47 3 986.23
    能源子系统重量menergy/kg 8 974.32 8 592.95
    结构子系统重量mstructure/kg 10 379.59 10 076.42
    推进子系统重量mthrust/kg 2 197.32 2 029.49
    载荷子系统重量mpayload/kg 1 000 1 000
    能量需求Qreq/kWh 4 968.83 4 642.64
    下载: 导出CSV
  • [1] DONALDSON A, SIMAIAKIS I, LOVEGREN J, et al.Parametric design of low emission hybrid-lift cargo aircraft[C]//Proceedings of 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2010: 1-11.
    [2] CARICHNER G E, NICOLAI L M.Fundamentals of aircraft and airship design, Volume 2-Airship design and case studies[M].Reston:AIAA, 2013:49-62.
    [3] AGTE J, GAN T, KUNZI F, et al.Conceptual design of a hybrid lift airship for intra-regional flexible access transport[C]//Proceedings of 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2010: 1-16
    [4] 孟军辉, 张一, 刘东旭, 等.升力体式浮升混合飞艇设计及参数分析[J].航空学报, 2015, 36(5):1500-1510.

    MENG J H, ZHANG Y, LIU D X, et al.Design and parameter analysis of liftbody-type buoyancy-lifting hybrid airships[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1500-1510(in Chinese).
    [5] 糜攀攀, 孟军辉, 吕明云.浮升混合飞艇气动性能及总体参数分析[J].北京航空航天大学学报, 2015, 41(6):1108-1116. doi: 10.13700/j.bh.1001-5965.2014.0404

    MI P P, MENG J H, LV M Y.Aerodynamic and overall parameters analysis of buoyancy-lifting hybrid airship[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1108-1116(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0404
    [6] 刘莉, 杜孟尧, 张晓辉, 等.太阳能/氢能无人机总体设计与能源管理策略研究[J].航空学报, 2016, 37(1):144-162.

    LIU L, DU M Y, ZHANG X H, et al.Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(1):144-162(in Chinese).
    [7] ASHFORD R, LEVITT B, MAYER N, et al.1981 LTA technology assessment-past and present[C]//Proceedings of Lighter-than-Air Conference.Reston: AIAA, 1981: 1-42.
    [8] MITCHELL R.Effectiveness of hybrid airships as cargo airlifters[C]//Proceedings of 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference.Reston: AIAA, 2011: 1-14.
    [9] ZHANG L C, LV M Y, MENG J H, et al.Conceptual design and analysis of hybrid airships with renewable energy[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(11):2144-2159. doi: 10.1177/0954410017711726
    [10] BROOKE L, BOWN A.Design, analysis, and patterning of inflated lifting body form lta vehicle hulls[C]//Proceedings of 18th AIAA Lighter-Than-Air Systems Technology Conference.Reston: AIAA, 2009: 1-13.
    [11] 依然.中航工业通飞与法国飞鲸公司签署战略合作协议[J].航空制造技术, 2015(14):18.

    YI R.AVIC Aeneral Aircraft Company has signed a strategic cooperation agreement with Flying Whales Company in French[J].Aeronautical Manufacturing Technology, 2015(14):18(in Chinese).
    [12] ZHANG L C, LV M Y, ZHU W Y, et al.Mission-based multidisciplinary optimization of solar-powered hybrid airship[J].Energy Conversion and Management, 2019, 185:44-54. doi: 10.1016/j.enconman.2019.01.098
    [13] CERUTI A, VOLOSHIN V, MARZOCCA P.Multi-disciplinary design optimization of unconventional airship configurations with heuristic algorithms[C]//Proceedings of 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston: AIAA, 2013: 1-11.
    [14] LIANG H, ZHU M, GUO X, et al.Conceptual design optimization of high altitude airship in concurrent subspace optimization[C]//Proceedings of 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2012: 1-17.
    [15] SOBIESZCZANSKI-SOBIESKI J.A linear decomposition method for large optimization problems.Blueprint for development: NASA-TM-83248[R].Hampton: NASA Langley Research Center, 1982: 8-15.
    [16] 余雄庆, 丁运亮.多学科设计优化算法及其在飞行器设计中应用[J].航空学报, 2000, 21(1):1-6. doi: 10.3321/j.issn:1000-6893.2000.01.001

    YU X Q, DING Y L.Multidisciplinary design optimization a survey of its algorithms and applications to aircraft design[J].Acta Aeronautica et Astronautica Sinica, 2000, 21(1):1-6(in Chinese). doi: 10.3321/j.issn:1000-6893.2000.01.001
    [17] 刘明航.基于响应面法的并行子空间优化算法改进研究[J].航空科学技术, 2017, 28(9):51-55.

    LIU M H.Research on concurrent subspace optimization based on response surface method[J].Aeronautical Science & Technology, 2017, 28(9):51-55(in Chinese).
    [18] 陈琪锋, 戴金海, 李晓斌.分布式协同进化MDO算法及其在导弹设计中应用[J].航空学报, 2002, 23(3):245-248. doi: 10.3321/j.issn:1000-6893.2002.03.011

    CHEN Q F, DAI J H, LI X B.Multidisciplinary design optimization based on distributed coevolution-algorithm and application in missile design[J].Acta Aeronautica et Astronautica Sinica, 2002, 23(3):245-248(in Chinese). doi: 10.3321/j.issn:1000-6893.2002.03.011
    [19] SELLAR R, BATILL S, RENAUD J.Response surface based, concurrent subspace optimization for multidisciplinary system design[C]//Proceedings of 34th Aerospace Sciences Meeting and Exhibit.Reston: AIAA, 1996: 1-14.
    [20] 王书河, 何麟书.飞行器多学科设计优化概述[J].宇航学报, 2009, 25(6):697-701.

    WANG S H, HE L S.The summarization of multidisciplinary design optimization for flight vehicles[J].Journal of Astronautics, 2009, 25(6):697-701(in Chinese).
    [21] 窦毅若, 刘飞, 张为华.响应面建模方法的比较分析[J].工程设计学报, 2007, 14(5):359-363. doi: 10.3785/j.issn.1006-754X.2007.05.003

    DOU Y R, LIU F, ZHANG W H.Research on comparative analysis of response surface methods[J].Jonrnal of Engineering Design, 2007, 14(5):359-363(in Chinese). doi: 10.3785/j.issn.1006-754X.2007.05.003
    [22] GAO X Z, HOU Z X, GUO Z, et al.Reviews of methods to extract and store energy for solar-powered aircraft[J].Renewable and Sustainable Energy Reviews, 2015, 44:96-108. doi: 10.1016/j.rser.2014.11.025
    [23] RAN H, THOMAS R, MAVRIS D.A comprehensive global model of broadband direct solar radiation for solar cell simulation[C]//Proceedings of 45th AIAA Aerospace Sciences Meeting and Exhibit.Reston: AIAA, 2007: 1-16.
    [24] ZHANG L, LI J, MENG J, et al.Thermal performance analysis of a high-altitude solar-powered hybrid airship[J].Renewable Energy, 2018, 125:890-906. doi: 10.1016/j.renene.2018.03.016
    [25] WANG H, SONG B, ZUO L.Effect of high-altitude airship's attitude on performance of its energy system[J].Journal of Aircraft, 2007, 44(6):2077-2080. doi: 10.2514/1.31505
    [26] IQBAL M.An introduction to solar radiation[M].Amsterdam:Elsevier, 2012:28-39.
    [27] LI J, LV M, TAN D, et al.Output performance analyses of solar array on stratospheric airship with thermal effect[J].Applied Thermal Engineering, 2016, 104:743-750. doi: 10.1016/j.applthermaleng.2016.05.122
    [28] MEYERS T, DALE R.Predicting daily insolation with hourly cloud height and coverage[J].Journal of Climate and Applied Meteorology, 1983, 22(4):537-545. doi: 10.1175/1520-0450(1983)022<0537:PDIWHC>2.0.CO;2
    [29] LV M, LI J, ZHU W, et al.A theoretical study of rotatable renewable energy system for stratospheric airship[J].Energy Conversion and Management, 2017, 140:51-61. doi: 10.1016/j.enconman.2017.02.069
    [30] LV M, YAO Z, ZHANG L, et al.Effects of solar array on the thermal performance of stratospheric airship[J].Applied Thermal Engineering, 2017, 124:22-33. doi: 10.1016/j.applthermaleng.2017.06.018
    [31] LI X, FANG X, DAI Q.Research on thermal characteristics of photovoltaic array of stratospheric airship[J].Journal of Aircraft, 2011, 48(4):1380-1386. doi: 10.2514/1.C031295
    [32] LIANG H, ZHU M, WU Z.Using cross-validation to design trend function in Kriging surrogate modeling[J].AIAA Journal, 2014, 52(10):2313-2327. doi: 10.2514/1.J052879
    [33] ZHANG K S, HAN Z H, SONG B F.Flight performance analysis of hybrid airship:Revised analytical formulation[J].Journal of Aircraft, 2010, 47(4):1318-1330. doi: 10.2514/1.47294
    [34] CARRIÓN M, STEIJL R, BARAKOS G N, et al.Analysis of hybrid air vehicles using computational fluid dynamics[J].Journal of Aircraft, 2016, 53(4):1-12.
    [35] MATSUMOTO H, KUBOTA Y, OHISHI M, et al.Drag on a cylinder with an apple-shaped cross section[J].World Journal of Mechanics, 2016, 6(9):323. doi: 10.4236/wjm.2016.69024
    [36] HOERNER S F, BORST H V.Fluid-dynamic lift:Practical information on aerodynamic and hydrodynamic lift[M].Washington:L.A.Hoerner, 1985:96-126.
    [37] DORRINGTON G E.Drag of spheroid-cone shaped airship[J].Journal of Aircraft, 2006, 43(2):363-371. doi: 10.2514/1.14796
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  681
  • HTML全文浏览量:  183
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-09
  • 录用日期:  2020-04-10
  • 网络出版日期:  2021-01-20

目录

    /

    返回文章
    返回
    常见问答