留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面介质阻挡放电对扩散火焰燃烧特性的影响

陈庆亚 车学科 仝毅恒 陈川 朱杨柱 聂万胜

陈庆亚, 车学科, 仝毅恒, 等 . 表面介质阻挡放电对扩散火焰燃烧特性的影响[J]. 北京航空航天大学学报, 2021, 47(5): 1015-1024. doi: 10.13700/j.bh.1001-5965.2020.0113
引用本文: 陈庆亚, 车学科, 仝毅恒, 等 . 表面介质阻挡放电对扩散火焰燃烧特性的影响[J]. 北京航空航天大学学报, 2021, 47(5): 1015-1024. doi: 10.13700/j.bh.1001-5965.2020.0113
CHEN Qingya, CHE Xueke, TONG Yiheng, et al. Influence of surface dielectric barrier discharge on diffusion flame combustion characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 1015-1024. doi: 10.13700/j.bh.1001-5965.2020.0113(in Chinese)
Citation: CHEN Qingya, CHE Xueke, TONG Yiheng, et al. Influence of surface dielectric barrier discharge on diffusion flame combustion characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 1015-1024. doi: 10.13700/j.bh.1001-5965.2020.0113(in Chinese)

表面介质阻挡放电对扩散火焰燃烧特性的影响

doi: 10.13700/j.bh.1001-5965.2020.0113
基金项目: 

国家自然科学基金 51876219

国家自然科学基金 51777214

详细信息
    作者简介:

    陈庆亚 男, 博士研究生。主要研究方向:等离子体流动控制与辅助燃烧

    聂万胜 男, 博士, 教授, 博士生导师。主要研究方向:航天推进理论与技术

    通讯作者:

    聂万胜, E-mail: nws1969@126.com

  • 中图分类号: O539

Influence of surface dielectric barrier discharge on diffusion flame combustion characteristics

Funds: 

National Natural Science Foundation of China 51876219

National Natural Science Foundation of China 51777214

More Information
  • 摘要:

    针对表面介质阻挡放电(SDBD)在激发等离子体时具有显著的气动效应和化学活化效应,为分析表面介质阻挡放电对空气/甲烷同轴剪切扩散燃烧的助燃效果,实验使用高频交流电源,基于等离子体诱导射流逆向激励对火焰施加控制。根据获取的射流流场纹影图像、火焰图像和CH*自发辐射,研究了等离子体对不同燃烧条件下火焰燃烧特性的影响。结果表明:受等离子体气动激励作用,火焰上游细长剪切层的空气/甲烷掺混得到增强,从而扩大了剪切层燃烧宽度,同时燃烧释热速率会明显提高,这主要与等离子体活化效应有关,并且该效应显著增强了位于喷嘴出口火焰基的燃烧强度。在空气流量较低时,等离子体气动激励可有效增大火焰下游湍流度和射流角,使火焰高度降低、宽度增大,且作用效果随放电电压提高逐渐增强。

     

  • 图 1  实验系统原理示意图

    Figure 1.  Schematic diagram of experimental system

    图 2  不同当量比下火焰图像随激励电压的变化(=10 L/min)

    Figure 2.  Variation of flame images with excitation voltage under different equivalence ratios (=10 L/min)

    图 3  不同当量比下射流纹影图随激励电压的变化(=10 L/min)

    Figure 3.  Variation of schlieren images of jet flow with excitation voltage under different equivalence ratios (=10 L/min)

    图 4  不同空气流量下放电对火焰图像的影响(Upp=20 kV)

    Figure 4.  Influence of discharge on flame images at different air flow rates (Upp=20 kV)

    图 5  不同空气流量下放电对射流纹影图的影响(Upp=20 kV)

    Figure 5.  Influence of discharge on schlieren images of jet flow at different air flow rates (Upp=20 kV)

    图 6  不同当量比下CH*自发辐射图像随激励电压的变化

    Figure 6.  Variation of CH* chemiluminescence images with excitation voltage under different equivalence ratios

    图 7  不同空气流量下放电对CH*自发辐射图像的影响

    Figure 7.  Influence of discharge on CH* chemiluminescence images at different air flow rates

    图 8  不同空气流量下放电对CH*自发辐射强度径向分布曲线的影响

    Figure 8.  Influence of discharge on CH* chemiluminescence radiation intensity radial distribution profiles at different air flow rates

    表  1  实验不同燃烧条件

    Table  1.   Different combustion conditions inexperiment

    /(L·min-1) Φoverall /(L·min-1) uair/(m·s-1) uCH4/(m·s-1) Reair ReCH4 (O/F)mon
    10 0.6 0.6 0.77 0.06 298 53 410
    10 1.0 1.0 0.77 0.10 298 88 148
    10 1.4 1.4 0.77 0.13 298 123 75
    15 0.6 0.9 1.16 0.09 449 79 410
    15 1.0 1.5 1.16 0.14 449 132 148
    15 1.4 2.1 1.16 0.20 449 185 75
    20 0.6 1.2 1.54 0.11 596 106 410
    20 1.0 2.0 1.54 0.19 596 176 148
    20 1.4 2.8 1.54 0.27 596 246 75
    25 0.6 1.5 1.93 0.14 747 132 410
    25 1.0 2.5 1.93 0.24 747 220 148
    25 1.4 3.5 1.93 0.33 747 308 75
    下载: 导出CSV
  • [1] STARIKOVSKIY A, ALEKSANDROV N.Plasma-assisted ignition and combustion[J].Progress in Energy and Combustion Science, 2013, 39(1):61-110. doi: 10.1016/j.pecs.2012.05.003
    [2] 韦宝禧, 欧东, 闫明磊, 等.超燃燃烧室等离子体点火和火焰稳定性能[J].北京航空航天大学学报, 2012, 38(12):1572-1576. https://bhxb.buaa.edu.cn/CN/Y2012/V38/I12/1572

    WEI B X, OU D, YAN M L, et al.Ignition and flame holding ability of plasma torch igniter in a supersonic flow[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(12):1572-1576(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2012/V38/I12/1572
    [3] SHAO T, WANG R, ZHANG C, et al.Atmospheric-pressure pulsed discharge and plasma:Mechanism, characteristics, and application[J].High Voltage, 2018, 3(1):14-20. doi: 10.1049/hve.2016.0014
    [4] KOZATO Y, KIKUCHI S, IMAO S, et al.Flow control of a rectangular jet by DBD plasma actuators[J].International Journal of Heat and Fluid Flow, 2016, 62(12):33-43.
    [5] BENARD N, BALCON N, TOUCHARD G, et al.Control of diffuser jet flow:Turbulent kinetic energy and jet spreading enhancements assisted by a non-thermal plasma discharge[J].Experiments in Fluids, 2008, 45(2):333-355. doi: 10.1007/s00348-008-0483-7
    [6] 李亮, 李修乾, 车学科, 等.等离子体增强射流掺混的激励参数影响研究[J].实验流体力学, 2018, 32(5):43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201805006.htm

    LI L, LI X Q, CHE X K, et al.Study on the influence of incentive parameters on plasma-enhanced jet mixing[J].Journal of Experiments in Fluid Mechanics, 2018, 32(5):43-49(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201805006.htm
    [7] ZHOU S Y, SU L Y, SHI T Y, et al.Experimental study on the diffusive flame stabilization mechanism of plasma injector driven by AC dielectric barrier discharge[J].Journal of Physics D:Applied Physics, 2019, 52(26):265202. doi: 10.1088/1361-6463/ab15cd
    [8] GIORGI M G D, FICARELLA A, SCIOLTI A, et al.Improvement of lean flame stability of inverse methane/air diffusion flame by using coaxial dielectric plasma discharge actuators[J].Energy, 2017, 126(5):689-706. http://www.sciencedirect.com/science/article/pii/S0360544217304176
    [9] 李腾, 魏小林, 覃建果.非热等离子体对甲烷扩散火焰影响的实验研究[J].工程热物理学报, 2013, 34(3):572-575. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201303045.htm

    LI T, WEI X L, TAN J G.Experimental study on the effect of non-thermal plasma on methane diffusion flame[J].Journal of Engineering Thermophysics, 2013, 34(3):572-575(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201303045.htm
    [10] ASAKURA J, KIMURA M.Influence of coaxial dielectric barrier discharge plasma actuator on jet flame[C]//Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows.Berlin: Springer, 2016: 537-544.
    [11] KIMURA M, OKUYAMA K.Influence of nozzle exit velocity distribution on flame stability using a coaxial DBD plasma actuator[C]//Proceedings of the 3rd Symposium on Fluid-Structure-Sound Interactions and Control.Berlin: Springer, 2016: 235-239.
    [12] LI G, JIANG X, ZHAO Y, et al.Jet flow and premixed jet flame control by plasma swirler[J].Physics Letters A, 2017, 381(13):1158-1162. doi: 10.1016/j.physleta.2017.01.060
    [13] SHIM M, NOH K, YOON W.Flame structure of methane/oxygen shear coaxial jet with velocity ratio using high-speed imaging and OH*, CH* chemiluminescence[J].Acta Astronautica, 2018, 147(6):127-132. http://www.sciencedirect.com/science/article/pii/S0094576517316399
    [14] MIAO J, LEUNG C W, CHEUNG C S, et al.Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame[J].Energy, 2016, 104(6):284-294. http://www.sciencedirect.com/science/article/pii/S0360544216303619
    [15] CHOY Y S, ZHEN H S, LEUNG C W, et al.Pollutant emission and noise radiation from open and impinging inverse diffusion flames[J].Applied Energy, 2012, 91(1):82-89. doi: 10.1016/j.apenergy.2011.09.013
    [16] MIKOFSKI M A, WILLIAMS T C, SHADDIX C R, et al.Flame height measurement of laminar inverse diffusion flames[J].Combustion and Flame, 2006, 146(1-2):63-72. doi: 10.1016/j.combustflame.2006.04.006
    [17] 邵涛, 章程, 王瑞雪, 等.大气压脉冲气体放电与等离子体应用[J].高电压技术, 2016, 42(3):685-705. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201603002.htm

    SHAO T, ZHANG C, WANG R X, et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J].High Voltage Engineering, 2016, 42(3):685-705(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201603002.htm
    [18] KIM T Y, CHOI S, KIM K K, et al.Combustion properties of gaseous CH4/O2 coaxial jet flames in a single-element combustor[J].Fuel, 2016, 184(11):28-35. http://www.sciencedirect.com/science/article/pii/S0016236116305968
    [19] HARDALUPSA Y, ORAIN M.Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminesecent emission from a flame[J].Combustion & Flame, 2004, 139(3):188-207.
    [20] MICKA D J, KNAUS D A, TEMME J B, et al.Passive optical combustion sensors for scramjet engine control:AIAA-2015-3947[R].Reston:AIAA, 2015:1-12.
    [21] TANG J, ZHAO W, DUAN Y.Some observations on plasma-assisted combustion enhancement using dielectric barrier discharges[J].Plasma Sources Science and Technology, 2011, 20(4):045009. doi: 10.1088/0963-0252/20/4/045009
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  63
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-25
  • 录用日期:  2020-04-24
  • 网络出版日期:  2021-05-20

目录

    /

    返回文章
    返回
    常见问答