留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倾转旋翼机巡航状态旋翼滑流影响

马铁林 张子伦 刘振臣 王祥胜 郝帅

马铁林, 张子伦, 刘振臣, 等 . 倾转旋翼机巡航状态旋翼滑流影响[J]. 北京航空航天大学学报, 2021, 47(6): 1124-1137. doi: 10.13700/j.bh.1001-5965.2020.0177
引用本文: 马铁林, 张子伦, 刘振臣, 等 . 倾转旋翼机巡航状态旋翼滑流影响[J]. 北京航空航天大学学报, 2021, 47(6): 1124-1137. doi: 10.13700/j.bh.1001-5965.2020.0177
MA Tielin, ZHANG Zilun, LIU Zhenchen, et al. Effect of rotor slipstream of tiltrotor aircraft in cruise mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1124-1137. doi: 10.13700/j.bh.1001-5965.2020.0177(in Chinese)
Citation: MA Tielin, ZHANG Zilun, LIU Zhenchen, et al. Effect of rotor slipstream of tiltrotor aircraft in cruise mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1124-1137. doi: 10.13700/j.bh.1001-5965.2020.0177(in Chinese)

倾转旋翼机巡航状态旋翼滑流影响

doi: 10.13700/j.bh.1001-5965.2020.0177
基金项目: 

北京市科技计划项目 Z181100003218015

详细信息
    通讯作者:

    刘振臣. E-mail: liuzhenchen@buaa.edu.cn

  • 中图分类号: V221+.3

Effect of rotor slipstream of tiltrotor aircraft in cruise mode

Funds: 

Beijing Municipal Sci-Tech Program Z181100003218015

More Information
  • 摘要:

    倾转旋翼机由于需要兼顾垂直起降和高速平飞2种典型工况下的动力需求,采用大直径旋翼作为推进装置会使机翼大部分处于旋翼滑流区内,这与常规螺旋桨飞机存在较大差异。为评估不同数值计算方法并研究旋翼滑流对倾转旋翼机气动特性的影响,针对选取两叶旋翼的某倾转旋翼机方案,利用激励盘模型、多参考系(MRF)模型、滑移网格模型分别进行了巡航状态下旋翼滑流对全机气动特性影响的数值模拟研究。结果表明:相对于无滑流状态,滑流定常影响使全机阻力增大,最大升阻比降低了7.5%,尾翼产生的升力增大,纵向静稳定度增加了17.1%,全机低头力矩增大;当迎角较小时,滑流虽然改变了机翼表面的升力分布,但是全机升力变化不大;滑流非定常影响会使全机气动特性产生周期性波动,升力系数波动幅度为9.0%,阻力系数波动幅度为10.8%,并且随着迎角的增大,波动幅度也越大。

     

  • 图 1  旋转坐标系与惯性坐标系

    Figure 1.  Rotating and inertial coordinate systems

    图 2  二维搭接面

    Figure 2.  Two-dimensional patched interface

    图 3  激励盘模型动压计算值与试验值对比

    Figure 3.  Comparison of dynamic pressure between calculation values and test values of actuator disk model

    图 4  试验台架

    Figure 4.  Test bench

    图 5  旋翼表面网格

    Figure 5.  Surface grid of rotor

    图 6  MRF模型计算值与试验值对比

    Figure 6.  Comparison between calculation values and test values of MRF model

    图 7  倾转旋翼机布局

    Figure 7.  Configuration of tiltrotor aircraft

    图 8  激励盘模型计算网格

    Figure 8.  Computational grids of actuator disk model

    图 9  搭接面网格切面示意图

    Figure 9.  Schematic of slice of patched interface grids

    图 10  有/无滑流全机气动特性对比

    Figure 10.  Comparison of aerodynamic characteristics of aircraft with and without slipstream

    图 11  有/无滑流各部件气动特性对比

    Figure 11.  Comparison of aerodynamic characteristics of components with and without slipstream

    图 12  有/无滑流压力系数云图对比

    Figure 12.  Comparison of pressure coefficient contour with and without slipstream

    图 13  有/无滑流机翼截面压力系数分布对比

    Figure 13.  Comparison of pressure coefficient distribution of wing section with and without slipstream

    图 14  有/无滑流速度云图对比

    Figure 14.  Comparison of velocity contour with and without slipstream

    图 15  X=1 m截面当地迎角增量变化

    Figure 15.  Increment of local angle of attack of X=1 m section

    图 16  V尾动压监测点布置

    Figure 16.  Distribution of dynamic pressure monitoring point of V-tail

    图 17  有/无滑流速度云图与流线对比(α=6°, Y=0.48 m)

    Figure 17.  Comparison of velocity contour and streamline with and without slipstream (α=6°, Y=0.48 m)

    图 18  有/无滑流V尾截面压力系数分布对比(α=6°, Y=0.48 m)

    Figure 18.  Comparison of pressure coefficient distribution of V-tail section with and without slipstream (α=6°, Y=0.48 m)

    图 19  全机气动特性随时间变化情况(α=0°)

    Figure 19.  Variation of aerodynamic characteristics of aircraft with time (α=0°)

    图 20  激励盘与MRF模型计算的压力系数云图对比(α=0°)

    Figure 20.  Comparison of pressure coefficient contour calculated by actuator disk and MRF models (α=0°)

    图 21  激励盘与MRF模型压力系数云图及流线对比(α=6°, Z=0.16 m)

    Figure 21.  Comparison of pressure coefficient contour and streamline between actuator disk and MRF models (α=6°, Z=0.16 m)

    图 22  激励盘模型X=1 m截面当地迎角增量变化

    Figure 22.  Increment of local angle of attack of X=1 m section of actuator disk model

    图 23  MRF模型4种旋翼相位角示意

    Figure 23.  Schematic of four rotor phase angles of MRF model

    图 24  MRF模型4种旋翼相位角气动特性曲线

    Figure 24.  Aerodynamic characteristic curves of four rotor phase angles of MRF model

    图 25  MRF模型与滑移网格模型计算结果对比(α=0°)

    Figure 25.  Comparison of results calculated by MRF and sliding mesh models (α=0°)

    图 26  MRF模型与滑移网格计算的压力系数云图对比(α=0°)

    Figure 26.  Comparison of pressure coefficient contour calculated by MRF and sliding mesh models (α=0°)

    表  1  验证算例旋翼参数[22]

    Table  1.   Rotor parameters of verification example[22]

    参数 数值或翼型
    旋翼半径/m 0.914
    桨毂半径/m 0.229
    旋翼翼型 NACA0012
    旋翼弦长/m 0.1
    旋翼桨距/(°) 11
    旋翼片数 2
    转速n/(r·min-1) 1 167
    下载: 导出CSV

    表  2  倾转旋翼机参数

    Table  2.   Parameters of tiltrotor aircraft

    参数 数值
    机翼翼展/m 3.5
    机翼面积/m2 1.18
    机翼安装角/(°) 3
    巡航高度/km 4
    平均气动弦长/m 0.33
    飞行速度/(km·h-1) 150
    旋翼转速n/(r·min-1) 1 500
    旋翼直径/m 1.5
    下载: 导出CSV

    表  3  不同迎角下Point 1与Point 2的动压监测值

    Table  3.   Dynamic pressure of Point 1 and Point 2 at different angles of attack

    α/(°) qU1/Pa qP1/Pa Δ1/% qU2/Pa qP2/Pa Δ2/%
    0 674.6 689.6 2.22 699.8 739.5 5.67
    3 620.4 650.6 4.87 700.9 762.4 8.77
    6 562.8 600.9 6.77 702.8 789.8 12.38
    9 580.6 630.6 8.61 705.4 817 15.82
    下载: 导出CSV

    表  4  三种数值方法评估

    Table  4.   Evaluation of three numerical methods

    方法 旋翼模型 网格量 计算时间 精度 适用范围
    激励盘 虚拟 定常
    MRF 真实 定常
    滑移网格 真实 非定常
    下载: 导出CSV
  • [1] MAISEL M D, GIULIANETTI D J, DUGAN D C. The history of the XV-15 rotor research aircraft: From concept to flight: NASA SP-2000-4517[R]. Washington, D.C. : NASA, 2000.
    [2] MATOS C, REDDY U, KOMERATH N. Rotor wake/fixed wing interactions with flap deflection[C]//55th American Helicopter Society Annual Forum, 1999: 1-12.
    [3] JOHNSON W. Airloads and wake geometry calculations for an isolated tiltrotor model in a wind tunnel[C]//27th European Rotorcraft Forum, 2001: 20030063077.
    [4] 张铮, 陈仁良. 倾转旋翼机/机翼气动干扰理论与试验[J]. 航空学报, 2017, 38(3): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201703002.htm

    ZHANG Z, CHEN R L. Theory and test of rotor/wing aero-interaction in tilt-rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 31-39(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201703002.htm
    [5] 招启军, 倪同兵, 李鹏, 等. 倾转旋翼机流动机理及气动干扰特性试验[J]. 航空动力学报, 2018, 33(12): 2900-2912. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201812010.htm

    ZHAO Q J, NI T B, LI P, et al. Experiment on flow mechanism and aerodynamic interaction characteristics of tilt-rotor aircraft[J]. Journal of Aerospace Power, 2018, 33(12): 2900-2912(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201812010.htm
    [6] 李鹏. 倾转旋翼机非定常气动特性分析及气动设计研究[D]. 南京: 南京航空航天大学, 2015: 39-42.

    LI P. Researches on aerodynamic design and analyses on unsteady aerodynamic characteristics of the tiltrotor aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 38-42(in Chinese).
    [7] STRASH D, LEDNICER D, RUBIN T. Analysis of propeller-induced aerodynamic effects: AIAA-98-2414[R]. Reston: AIAA, 1998.
    [8] VELDHUIS L, NEBIOLO S. Analysis of calculated and measured wake characteristics of a propeller-wing model[C/OL]//38th Aerospace Sciences Meeting and Exhibit, 2000(2012-08-22)[2020-05-01]. https://doi.org/10.2514/6.2000-908.
    [9] 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4): 845-852. doi: 10.3321/j.issn:1000-6893.2008.04.013

    LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 845-852(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.04.013
    [10] 赵寅宇, 黎鑫, 史勇杰, 等. 双拉力螺旋桨构型复合式高速直升机旋翼/螺旋桨干扰流场分析[J]. 南京航空航天大学学报, 2017, 49(2): 154-164. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201702002.htm

    ZHAO Y Y, LI X, SHI Y J, et al. Analysis on rotor-propellers interaction flowfield for compound double-thust-propeller high-speed helicopters[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(2): 154-164(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201702002.htm
    [11] 夏贞锋. 螺旋桨滑流数值模拟方法及气动干扰研究[D]. 西安: 西北工业大学, 2015: 57-72.

    XIA Z F. Numerical approaches of propeller slipstream simulations and aerodynamic interference analysis[D]. Xi'an: Northwestern Polytechnical University, 2015: 57-72(in Chinese).
    [12] 杨小川, 李伟, 王运涛, 等. 一种分布式螺旋桨运输机方案及其滑流效应研究[J]. 西北工业大学学报, 2019, 37(2): 361-368. doi: 10.3969/j.issn.1000-2758.2019.02.020

    YANG X C, LI W, WANG Y T, et al. Research on aerodynamic shape design scheme of a distributed propeller transport aircraft and its slipstream effect[J]. Journal of Northwestern Polytechnical University, 2019, 37(2): 361-368(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.02.020
    [13] 陈广强, 白鹏, 詹慧玲, 等. 一种推进式螺旋桨无人机滑流效应影响研究[J]. 空气动力学学报, 2015, 33(4): 554-562. doi: 10.7638/kqdlxxb-2014.0013

    CHEN G Q, BAI P, ZHAN H L, et al. Numerical simulation study on propeller slipstream effect on unmanned air vehicle with propeller engine[J]. Acta Aerodynamica Sinica, 2015, 33(4): 554-562(in Chinese). doi: 10.7638/kqdlxxb-2014.0013
    [14] 王科雷, 祝小平, 周洲, 等. 低雷诺数分布式螺旋桨滑流气动影响[J]. 航空学报, 2016, 37(9): 2669-2678. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201609005.htm

    WANG K L, ZHU X P, ZHOU Z, et al. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2669-2678(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201609005.htm
    [15] 张小莉, 张一帆. 螺旋桨滑流对增升装置气动特性影响研究[J]. 航空计算技术, 2011, 41(4): 1-3. doi: 10.3969/j.issn.1671-654X.2011.04.001

    ZHANG X L, ZHANG Y F. Research on interaction of propeller and high-lift system[J]. Aeronautical Computing Technique, 2011, 41(4): 1-3(in Chinese). doi: 10.3969/j.issn.1671-654X.2011.04.001
    [16] 任晓峰, 段卓毅, 魏剑龙. 滑流对飞机纵向静稳定性影响的数值模拟[J]. 空气动力学学报, 2017, 35(3): 383-391. doi: 10.7638/kqdlxxb-2017.0006

    REN X F, DUAN Z Y, WEI J L. Numerical simulation of propeller slipstream effects on pitching static stability[J]. Acta Aerodynamica Sinica, 2017, 35(3): 383-391(in Chinese). doi: 10.7638/kqdlxxb-2017.0006
    [17] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11): 2910-2920. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201411002.htm

    XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2910-2920(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201411002.htm
    [18] 付炜嘉, 李杰, 娄琪琳. 基于动态面搭接技术的直升机旋翼流场分析[J]. 应用力学学报, 2014, 31(3): 311-316. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201403002.htm

    FU W J, LI J, LOU Q L. Transient response characteristic of magnetic fluid saturated poroelastic medium[J]. Chinese Journal of Applied Mechanics, 2014, 31(3): 311-316(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201403002.htm
    [19] 赵帅, 段卓毅, 李杰, 等. 涡桨飞机螺旋桨滑流气动干扰效应及流动机理[J]. 航空学报, 2019, 40(4): 163-174. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201904015.htm

    ZHAO S, DUAN Z Y, LI J, et al. Interference effects and flow mechanism of propeller slipstream for turboprop aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 163-174(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201904015.htm
    [20] ROOSENBOOM E W M, STVRMER A, SCHRÖDER A. Advanced experimental and numerical validation and analysis of propeller slipstream flows[J]. Journal of Aircraft, 2010, 47(1): 284-291. doi: 10.2514/1.45961
    [21] RAI M M. A relaxation approach to patched-grid calculations with Euler equations: AIAA-85-0295[R]. Reston: AIAA, 1985.
    [22] MCKEE J W, NAESETH R L. Experimental investigation of the drag of flat plates and cylinders in the slipstream of a hovering rotor: NACA TN 4239[R]. Washington, D.C. : NACA, 1958.
    [23] 孙俊磊, 王和平, 周洲, 等. 螺旋桨滑流对菱形翼布局无人机气动的影响[J]. 航空学报, 2018, 39(1): 141-154. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201801012.htm

    SUN J L, WANG H P, ZHOU Z, et al. Effects of propeller slipstream on aerodynamic performance of diamond joined-wing configuration UAV[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 141-154(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201801012.htm
  • 加载中
图(26) / 表(4)
计量
  • 文章访问数:  522
  • HTML全文浏览量:  112
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 录用日期:  2020-07-11
  • 网络出版日期:  2021-06-20

目录

    /

    返回文章
    返回
    常见问答