留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于增益调度与光滑切换的倾转旋翼机最优控制

余新 陈仁良

余新, 陈仁良. 基于增益调度与光滑切换的倾转旋翼机最优控制[J]. 北京航空航天大学学报, 2021, 47(6): 1186-1198. doi: 10.13700/j.bh.1001-5965.2020.0176
引用本文: 余新, 陈仁良. 基于增益调度与光滑切换的倾转旋翼机最优控制[J]. 北京航空航天大学学报, 2021, 47(6): 1186-1198. doi: 10.13700/j.bh.1001-5965.2020.0176
YU Xin, CHEN Renliang. Optimal control of tilt rotor aircraft based on gain scheduling and smooth switching[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1186-1198. doi: 10.13700/j.bh.1001-5965.2020.0176(in Chinese)
Citation: YU Xin, CHEN Renliang. Optimal control of tilt rotor aircraft based on gain scheduling and smooth switching[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1186-1198. doi: 10.13700/j.bh.1001-5965.2020.0176(in Chinese)

基于增益调度与光滑切换的倾转旋翼机最优控制

doi: 10.13700/j.bh.1001-5965.2020.0176
基金项目: 

国家自然科学基金 11672128

江苏高校优势学科建设工程 

详细信息
    通讯作者:

    陈仁良, E-mail: crlae@nuaa.edu.cn

  • 中图分类号: V212.4

Optimal control of tilt rotor aircraft based on gain scheduling and smooth switching

Funds: 

National Natural Science Foundation of China 11672128

Priority Academic Program Development of Jiangsu Higher Education Institutions 

More Information
  • 摘要:

    针对倾转旋翼机转换机动中变动力学特性导致的复杂控制问题,提出基于增益调度(GS)的线性二次最优控制与光滑切换控制结合的综合体系结构,用以实现转换机动过程中的全局最优控制。该控制综合方法,在保证性能指标要求最小的同时,对操纵机构的负荷较低。首先,建立了倾转旋翼机高置信度飞行动力学模型,并应用混合操纵克服操纵冗余问题。其次,设计了基于增益调度的线性二次最优多环控制器,并采用光滑切换控制策略综合2套控制器,实现动态倾转过程的姿态平滑过渡。最后,进行以倾转走廊中间路径为期望轨迹的全模式自主飞行仿真。仿真结果表明:控制系统在转换机动过程中体现出强鲁棒性和较优的系统性能。

     

  • 图 1  XV-15倾转旋翼飞行器构型

    Figure 1.  XV-15 tilt rotor aircraft

    图 2  旋翼非定常力学特性

    Figure 2.  Unsteady aerodynamic characteristics of rotor

    图 3  机翼流场分布

    Figure 3.  Flow field distribution of wing

    图 4  纵向杆与脚蹬混合操纵结构

    Figure 4.  Mixed control structure of longitudinal stick and pedal

    图 5  总距杆与横向杆混合操纵结构

    Figure 5.  Mixed control structure of collective stick and lateral stick

    图 6  直升机模式稳态飞行验证

    Figure 6.  Steady flight verification for helicopter mode

    图 7  短舱倾转角30°下稳态飞行验证

    Figure 7.  Steady flight verification of nacelle at 30°tilt angle

    图 8  短舱倾转角60°下稳态飞行验证

    Figure 8.  Steady flight verification of nacelle at 60°tilt angle

    图 9  飞机模式稳态飞行验证

    Figure 9.  Steady flight verification of plane mode

    图 10  完整控制系统结构

    Figure 10.  Overall structure of control system

    图 11  直升机模式增益调度控制结构

    Figure 11.  Gain-scheduling control structure for helicopter mode

    图 12  高度保持模态

    Figure 12.  Height holding mode

    图 13  飞机模式增益调度控制结构

    Figure 13.  Gain-scheduling control structure for plane mode

    图 14  发动机短舱倾转角与旋翼转速变化规律

    Figure 14.  Variation laws of engine nacelle tilt angle and rotor speed

    图 15  全模式实时仿真结果

    Figure 15.  Full-modes real-time simulation results

    图 16  作动器时间历程

    Figure 16.  Time history of actuators

    图 17  传统LQR控制体系全模式仿真结果

    Figure 17.  Full-modes simulation results of traditional LQR control system

    图 18  大气紊流环境下全模式实时仿真结果

    Figure 18.  Full-modes real-time simulation results in atmospheric turbulence environment

    图 19  大气紊流环境下作动器时间历程

    Figure 19.  Time history of actuators in atmospheric turbulence environment

    图 20  Dryden大气紊流模型信号

    Figure 20.  Signals of Dryden atmospheric turbulence model

    表  1  XV-15部件数据

    Table  1.   Modeling data of XV-15 components

    部件 X/m Y/m Z/m
    旋翼
    -7.62 ±4.9 -2.54
    机翼短舱 -7.395 7 ±2.6 2.435
    垂尾
    -14.48 ±2.94 1.96
    机身
    -7.442 2 0 -2.133 6
    平尾
    -14.24 0 2.616 2
    重心
    -7.65 0 -2.074
    下载: 导出CSV

    表  2  直升机模式控制器增益调度表

    Table  2.   Gain-scheduling table of helicopter mode controller

    βn/(°) Kp Kq Kw Kr
    0 1.0 1.0 1.0 1.0
    30 0.315 2.433 0.241 0.493
    下载: 导出CSV

    表  3  飞机模式控制器增益调度表

    Table  3.   Gain-scheduling table of plane mode controller

    βn/(°) Kp Kq Kr
    90 1.5 8.0 8.5
    60 1.66 15.1 10
    30 2.66 25.3 11.8
    下载: 导出CSV
  • [1] KLEINHESSELINK K M. Stability and control modeling of tiltrotor aircraft[D]. Washington, D.C. : University of Maryland, 2007: 3-10.
    [2] WALZ C, BRICK S, BAUER C. Nacelle control augmentation for tiltrotor flight directors[C]//American Helicopter Society, 1999: 10.
    [3] MEHRA R K, PRASANTH R K, GOPALASWAMY S. XV-15 tiltrotor flight control system design using model predictive control[C]//1998 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 1998: 139-148.
    [4] FERGUSON S W. A mathematical model for real time flight simulation of a generic tilt-rotor aircraft: NASA-CR-166536[R]. [S. l. ]: Ames Research Center, 1988: 538.
    [5] HARENDRA P B J. V/STOL tilt rotor study. Volume 5: A mathematical model for real time flight simulation of the Bell model 301 tilt rotor research aircraft: NASA-CR-114614[R]. : Ames Research Center, 1973.
    [6] KIMBALL D F. Recent tilt rotor flight control law innovations[J]. Journal of the American Helicopter Society, 1987, 32(3): 33-42. doi: 10.4050/JAHS.32.3.33
    [7] CALISE A J. RYSDYK R. Research in nonlinear flight control for tiltrotor aircraft operating in the terminal area: NASA-CR-203112[R]. : Ames Research Center, 1995.
    [8] RYSDYK R, CALISE A, CHEN R, et al. Nonlinear adaptive control of tiltrotor aircraft using neural networks[C]//1997 World Aviation Congress. Reston: AIAA, 1997.
    [9] KIM B, CALISE A. Nonlinear flight control using neural networks[C]//Guidance, Navigation, and Control Conference. Reston: AIAA, 1994.
    [10] GADEWADIKAR J, LEWIS F, SUBBARAO K, et al. Structured H-infinity command and control-loop design for unmanned helicopters[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1093-1102. doi: 10.2514/1.31377
    [11] YANGUO S, HUANJIN W. Design of flight control system for a small unmanned tilt rotor aircraft[J]. Chinese Journal of Aeronautics, 2009, 22(3): 250-256. doi: 10.1016/S1000-9361(08)60095-3
    [12] 李晓理, 王伟, 孙维. 多模型自适应控制[J]. 控制与决策, 2000, 15(4): 390-394. doi: 10.3321/j.issn:1001-0920.2000.04.002

    LI X L, WANG W, SUN W. Multi models adaptive control[J]. Control and Decision, 2000, 15(4): 390-394(in Chinese). doi: 10.3321/j.issn:1001-0920.2000.04.002
    [13] 郭剑东, 宋彦国, 夏品奇. 倾转旋翼机模型缝合鲁棒控制律设计[J]. 南京航空航天大学学报, 2011, 43(3): 393-398. doi: 10.3969/j.issn.1005-2615.2011.03.020

    GUO J D, SONG Y G, XIA P Q. Robust control law design of model stitching for tilt rotor aircraft[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2011, 43(3): 393-398(in Chinese). doi: 10.3969/j.issn.1005-2615.2011.03.020
    [14] 郭剑东. 无人倾转旋翼机飞行控制研究[D]. 南京: 南京航空航天大学, 2013: 64-75.

    GUO J D. Research on flight control of unmanned tilt rotor aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 64-75(in Chinese).
    [15] 陈晓, 王晓燕, 王新民, 等. 改进的倾转旋翼机平稳过渡控制系统设计[J]. 计算机工程与应用, 2019, 55(21): 254-260. doi: 10.3778/j.issn.1002-8331.1806-0403

    CHEN X, WANG X Y, WANG X M, et al. Improved design of stable transition control system for tilt rotor aircraft[J]. Computer Engineering and Applications, 2019, 55(21): 254-260(in Chinese). doi: 10.3778/j.issn.1002-8331.1806-0403
    [16] LIU Z, HE Y Q, YANG L Y, et al. Control techniques of tilt rotor unmanned aerial vehicle systems: A review[J]. Chinese Journal of Aeronautics, 2017, 30(1): 135-148. doi: 10.1016/j.cja.2016.11.001
    [17] SATO M, MURAOKA K. Flight controller design and demonstration of quad-tilt-wing unmanned aerial vehicle[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(6): 1071-1082. doi: 10.2514/1.G000263
    [18] MURAOKA K, OKADA N, KUBO D. Quad tilt wing VTOL UAV: Aerodynamic characteristics and prototype flight[C]//AIAA Infotech@Aerospace Conference. Reston: AIAA, 2009.
    [19] CHEN R T N. A simplified rotor system mathematical model for piloted flight dynamics simulation: NASA N79-23977[R]. [S. l. ]: Ames Research Center, 1979: 29.
    [20] GAONKAR G, PETERS D. Review of dynamic inflow modeling for rotorcraft flight dynamics[C]//27th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1986.
    [21] CARLSON E, ZHAO Y, CHEN R. Optimal tiltrotor runway operations in one engine inoperative[C]//Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 1999.
    [22] FERGUSON S W. Developement and validation of a simulation for generic tilt-rotor aircraft: NASA-CR166537[R]. [S. l. ]: Ames Research Center, 1989: 276.
    [23] ONER K T, CETINSOY E, SIRIMOGLU E, et al. LQR and SMC stabilization of a new unmanned aerial vehicle[J]. World Academy of Science Engineering & Technology, 2011, 3(10): 367-372.
    [24] KUDINOV Y I, PASHCHENKO F F, KELINA A Y, et al. Analysis of control system models with conventional LQR and fuzzy LQR controller[J]. Procedia Computer Science, 2019, 150: 737-742. doi: 10.1016/j.procs.2019.02.007
    [25] YANG W, HAMMOUDI M N, HERRMANN G, et al. Two-state dynamic gain scheduling control applied to an F16 aircraft model[J]. International Journal of Non-Linear Mechanics, 2012, 47(10): 1116-1123. doi: 10.1016/j.ijnonlinmec.2011.09.007
    [26] RAVANBOD L, NOLL D. Gain-scheduled two-loop autopilot for an aircraft[J]. Journal of Dynamic Systems Measurement and Control, 2012, 45(13): 772-777. doi: 10.1115/1.4026832
    [27] YUE T, WANG L, AI J. Gain self-scheduled H control for morphing aircraft in the wing transition process based on an LPV model[J]. Chinese Journal of Aeronautics, 2013, 26(4): 909-917. doi: 10.1016/j.cja.2013.06.004
    [28] 蔡系海, 付荣, 曾建平. 倾转旋翼机模态转换的鲁棒H增益调度控制[J]. 厦门大学学报(自然科学版), 2016, 55(3): 382-389. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201603014.htm

    CAI X H, FU R, ZENG J P. Robust H gain-scheduling control for mode conversion of tilt rotor aircrafts[J]. Journal of Xiamen University (Natural Science), 2016, 55(3): 382-389(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201603014.htm
    [29] SATO M, MURAOKA K. Flight controller design and demonstration of quad-tilt-wing unmanned aerial vehicle[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(6): 1071-1082. doi: 10.2514/1.G000263
    [30] HERNANDEZ-GARCIA R G, RODRIGUEZ-CORTES H. Transition flight control of a cyclic tiltrotor uav based on the gain-scheduling strategy[C]//2015 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2015: 951-956.
    [31] HUANGZHONG P, ZIYANG Z, CHEN G. Tiltrotor aircraft attitude control in conversion mode based on optimal preview control[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway: IEEE Press, 2014: 1544-1548.
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  399
  • HTML全文浏览量:  96
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-06
  • 录用日期:  2020-06-13
  • 网络出版日期:  2021-06-20

目录

    /

    返回文章
    返回
    常见问答