留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低信噪比下分组交织器识别

吴昭军 刘凯 钟兆根 但波 周磊砢

吴昭军, 刘凯, 钟兆根, 等 . 低信噪比下分组交织器识别[J]. 北京航空航天大学学报, 2021, 47(7): 1387-1398. doi: 10.13700/j.bh.1001-5965.2020.0193
引用本文: 吴昭军, 刘凯, 钟兆根, 等 . 低信噪比下分组交织器识别[J]. 北京航空航天大学学报, 2021, 47(7): 1387-1398. doi: 10.13700/j.bh.1001-5965.2020.0193
WU Zhaojun, LIU Kai, ZHONG Zhaogen, et al. Recognition of packet interleaver at low SNR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1387-1398. doi: 10.13700/j.bh.1001-5965.2020.0193(in Chinese)
Citation: WU Zhaojun, LIU Kai, ZHONG Zhaogen, et al. Recognition of packet interleaver at low SNR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1387-1398. doi: 10.13700/j.bh.1001-5965.2020.0193(in Chinese)

低信噪比下分组交织器识别

doi: 10.13700/j.bh.1001-5965.2020.0193
基金项目: 

国家自然科学基金 91538201

"泰山学者"建设工程专项 ts201511020

详细信息
    通讯作者:

    刘凯. E-mail: wendao_2008@163.com

  • 中图分类号: V243.1;TN911.7

Recognition of packet interleaver at low SNR

Funds: 

National Natural Science Foundation of China 91538201

Taishan Scholar Special Foundation ts201511020

More Information
  • 摘要:

    针对现有的分组交织器识别算法计算复杂高且容错性差缺点,从分组交织后的同步码分布规律出发,提出了一种新的识别算法。首先,利用数据矩阵统计特性,给出了在任意矩阵列数下,同步码和随机业务数据位置上的概率密度分布函数,基于最小错误判决准则,设定了同步码检测门限,同时基于3倍标准差准则,求解出稳健的交织周期识别门限;其次,分析了数据矩阵中每一行与每一列累积量之间的对应关系,提出了一种快速交织周期遍历方法,使得数据矩阵的构建次数大大减少;最后,总结了4个分组交织后同步码分布规律,通过遍历同步码序列,利用同步码之间的位置关系,实现交织同步位置、分组交织列与交织行参数快速识别。仿真结果表明:所提算法具有较强的低信噪比容错性,在信噪比为-6 dB条件下,参数识别率能够达到98%以上,同时与现有的算法相比,其性能提升4~10 dB且计算效率明显提高。

     

  • 图 1  分组交织与解交织过程

    Figure 1.  Process of packet interleaving and deinterleaving

    图 2  不同η下的概率密度函数

    Figure 2.  Probability density function under different η

    图 3  sM时,数据排列情况

    Figure 3.  Data arrangement at s < M

    图 4  sM时,同步码交织后分布规律

    Figure 4.  Distribution rule of synchronization codes after interleaving at s < M

    图 5  s=kM时,数据排列情况

    Figure 5.  Data arrangement at s=kM

    图 6  s=kM时,同步码交织后分布规律

    Figure 6.  Distribution rule of synchronization codes after interleaving at s=kM

    图 7  s=kM+r时,数据排列情况

    Figure 7.  Data arrangement at s=kM+r

    图 8  s=kM+r时,同步码交织后分布规律

    Figure 8.  Distribution rule of synchronization codes after interleaving at s=kM+r

    图 9  帧同步后一阶累计量分布

    Figure 9.  First-order cumulant distribution after frame synchronization

    图 10  校验统计结果

    Figure 10.  Results of verification statistics

    图 11  同步码偏差数目对算法性能影响

    Figure 11.  Influence of deviation number of synchronization codes on algorithm performance

    图 12  同步码数目对算法性能影响

    Figure 12.  Influence of the number of synchronization codes on algorithm

    图 13  截获帧块数目对算法性能影响

    Figure 13.  Influence of intercepted frame blocks on algorithm performance

    图 14  三种算法的性能对比

    Figure 14.  Performance comparison among three algorithms

    表  1  交织周期识别结果

    Table  1.   Recognition results of interleaving period

    s/bit EsT Λs Λopt 检测数目 结果判断
    8 3 024 7.219 3 0.781 71 8
    1 512 7.839 8 0.783 26 0 ×
    1 008 7.963 7 0.783 78 0 ×
    24 3 024 22.578 9 0.781 73 23
    1 512 23.725 5 0.783 27 0 ×
    1 008 23.939 2 0.783 78 0 ×
    36 3 024 34.203 6 0.781 73 36
    1 512 35.661 3 0.783 27 0 ×
    1 008 35.925 5 0.783 78 0 ×
    下载: 导出CSV

    表  2  交织起点、分组交织列与行识别结果

    Table  2.   Results for recognition of interleaving starting point, packet interleaving column and row

    s/bit 遍历同步码位置 起点位置 连续同步码簇数
    8 7 3 002 14 ×
    24 21 3 002 14 14 18
    36 31 3 002 14 14 18
    下载: 导出CSV
  • [1] 刘杰, 张立民, 占超. 基于矩阵分析的线性分组码盲识别[J]. 系统工程与电子技术, 2017, 39(2): 404-409. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201702026.htm

    LIU J, ZHANG L M, ZHAN C. Blind recognition of linear block codes based on matrix analysis[J]. Systems Engineering and Electronics, 2017, 39(2): 404-409(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201702026.htm
    [2] 刘杰, 张立民, 钟兆根. 基于二元域等效的RS码编码参数盲识别[J]. 电子学报, 2018, 46(12): 2888-2895. doi: 10.3969/j.issn.0372-2112.2018.12.010

    LIU J, ZHANG L M, ZHONG Z G. Blind parameter identification of RS code based on binary field equivalence[J]. Acta Electronica Sinica, 2018, 46(12): 2888-2895(in Chinese). doi: 10.3969/j.issn.0372-2112.2018.12.010
    [3] 于沛东, 彭华, 巩克现, 等. 基于最小二乘代价函数的卷积码盲识别方法[J]. 电子学报, 2018, 46(7): 1545-1552. doi: 10.3969/j.issn.0372-2112.2018.07.002

    YU P D, PENG H, GONG K X, et al. Blind recognition of convolutional codes based on least-square cost-function[J]. Acta Electronica Sinica, 2018, 46(7): 1545-1552(in Chinese). doi: 10.3969/j.issn.0372-2112.2018.07.002
    [4] 姚智刚, 解辉, 韩壮志, 等. 基于分段Walsh-hadamard变换的卷积码盲重建算法[J]. 电子与信息学报, 2019, 41(9): 2047-2054. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201909003.htm

    YAO Z G, XIE H, HAN Z Z, et al. Blind recognition of convolutional code based on partitioned Walsh-Hadamard transform[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2047-2054(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201909003.htm
    [5] 吴昭军, 张立民, 钟兆根. 基于最大序列相关性的Turbo码交织器识别[J]. 航空学报, 2019, 40(6): 257-268. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201906021.htm

    WU Z J, ZHANG L M, ZHONG Z G. Blind recognition of interleaver for Turbo codes based on maximum sequence correlation[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 257-268(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201906021.htm
    [6] 陈泽亮, 李静, 彭华, 等. 利用Gibbs采样进行优化的Turbo码交织器识别[J]. 电子学报, 2018, 46(1): 15-23. doi: 10.3969/j.issn.0372-2112.2018.01.003

    CHEN Z L, LI J, PENG H, et al. An optimization method using Gibbs sampler for turbo code interleaver identification[J]. Acta Electronica Sinica, 2018, 46(1): 15-23(in Chinese). doi: 10.3969/j.issn.0372-2112.2018.01.003
    [7] BUREL G, GAUTIER R. Blind estimation of encoder and interleaver characteristics in non-cooperative context[C]//IASTED International Conference on Communications, Internet and Information Technology. Piscataway: IEEE Press, 2003: 17-19.
    [8] SICOT G, HOUCKE S. Blind detection of interleaver parameters[J]. Signal Processing, 2009, 89(4): 450-462. doi: 10.1016/j.sigpro.2008.09.012
    [9] GAN L, LI D, LIU Z H, et al. A low complexity algorithm of blind estimation of convolutional interleaver parameters[J]. Science in China Series F: Information Sciences, 2012, 55(10): 1-9. doi: 10.1007/s11432-012-4673-9
    [10] XU Y Y, ZHONG Y, HUANG Z P. An improved blind recognition method of the convolutional interleaver parameters in a noisy channel[J]. IEEE Access, 2019, 6(7): 101775-101784. http://ieeexplore.ieee.org/document/8769973/
    [11] 解辉, 王丰华, 黄知涛. 卷积交织器盲识别方法[J]. 电子与信息学报, 2013, 35(8): 1952-1957. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201308028.htm

    XIE H, WANG F H, HUANG Z T. A method for blind recognition of convolutional interleaver[J]. Journal of Electronics & Information Technology, 2013, 35(8): 1952-1957(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201308028.htm
    [12] 于沛东, 彭华, 巩克家, 等. 利用帧同步码的卷积交织器快速盲识别方法[J]. 电子学报, 2018, 46(6): 1530-1536. doi: 10.3969/j.issn.0372-2112.2018.06.038

    YU P D, PENG H, GONG K J, et al. Fast blind recognition of convolutional interleavers based on existence of frame sync codes[J]. Acta Electronica Sinica, 2018, 46(6): 1530-1536(in Chinese). doi: 10.3969/j.issn.0372-2112.2018.06.038
    [13] 郑鹏鹏, 张玉, 杨晓静. 基于低码率线性分组码的分组交织长度识别[J]. 电子信息对抗技术, 2012, 27(4): 9-12. doi: 10.3969/j.issn.1674-2230.2012.04.003

    ZHENG P P, ZHANG Y, YANG X J. Identification of the length of packet interleaver based on low code-rrate binary linear blick codes[J]. Electronic Information Warfare Technology, 2012, 27(4): 9-12(in Chinese). doi: 10.3969/j.issn.1674-2230.2012.04.003
    [14] 陆凯, 张旻, 李歆昊. 基于矩阵秩统计的卷积码分组交织盲识别[J]. 探测与控制学报, 2015, 37(3): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYX201503009.htm

    LU K, ZHANG M, LI X H. Blind identifying of convolutional code and packet interleaver based on matrix rank statistic[J]. Journal of Detection & Control, 2015, 37(3): 40-44(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDYX201503009.htm
    [15] 陈泽亮, 巩克现, 彭华, 等. 基于软信息的分组交织和卷积码联合识别[J]. 电子学报, 2018, 46(6): 1454-1460. doi: 10.3969/j.issn.0372-2112.2018.06.026

    CHEN Z L, GONG K X, PENG H, et al. Joint blind recognition of packet interleaver and convolution code based on soft information[J]. Acta Electronica Sinica, 2018, 46(6): 1454-1460(in Chinese). doi: 10.3969/j.issn.0372-2112.2018.06.026
    [16] WU Z J, ZHANG L M, ZHONG Z G. A maximum cosinoidal cost function method for parameter estimation of RSC Turbo codes[J]. IEEE Communications Letters, 2019, 23(3): 390-393. doi: 10.1109/LCOMM.2018.2890224
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  59
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 录用日期:  2020-08-07
  • 网络出版日期:  2021-07-20

目录

    /

    返回文章
    返回
    常见问答