留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于K-FWH声比拟方法的串列双圆柱气动噪声研究

陈武 周毅

陈武, 周毅. 基于K-FWH声比拟方法的串列双圆柱气动噪声研究[J]. 北京航空航天大学学报, 2021, 47(10): 2118-2128. doi: 10.13700/j.bh.1001-5965.2020.0365
引用本文: 陈武, 周毅. 基于K-FWH声比拟方法的串列双圆柱气动噪声研究[J]. 北京航空航天大学学报, 2021, 47(10): 2118-2128. doi: 10.13700/j.bh.1001-5965.2020.0365
CHEN Wu, ZHOU Yi. Investigation on aeroacoustic of tandem double cylinders by K-FWH acoustic analogy method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2118-2128. doi: 10.13700/j.bh.1001-5965.2020.0365(in Chinese)
Citation: CHEN Wu, ZHOU Yi. Investigation on aeroacoustic of tandem double cylinders by K-FWH acoustic analogy method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2118-2128. doi: 10.13700/j.bh.1001-5965.2020.0365(in Chinese)

基于K-FWH声比拟方法的串列双圆柱气动噪声研究

doi: 10.13700/j.bh.1001-5965.2020.0365
基金项目: 

国家重点研发计划 2019YFE0104800

详细信息
    通讯作者:

    周毅, E-mail: yizhou@njust.edu.cn

  • 中图分类号: V21

Investigation on aeroacoustic of tandem double cylinders by K-FWH acoustic analogy method

Funds: 

National Key R & D Program of China 2019YFE0104800

More Information
  • 摘要:

    为了研究串列双圆柱的气动噪声与大尺度涡脱落之间的关系,采用大涡模拟并结合K-FWH方程的方法进行研究。采用标准算例的实验结果对数值模拟方法进行了验证,证实了壁面自适应局部涡黏(WALE)大涡模拟模型结合基于K-FWH方程的声比拟方法能够较好地预测不同频率下的噪声谱密度。数值模拟结果表明:上下游圆柱的涡脱落频率相同,大尺度涡呈现反相位脱落。上游圆柱表面平均阻力系数大于下游圆柱,而下游圆柱表面的压力脉动更为剧烈。双圆柱绕流的气动噪声来源主要为偶极子噪声(包括柱体表面瞬时压强及其时间导数),其中瞬时压强的时间导数是主要的声压组成部分。在此基础上,对某一观测点的瞬时声压及其分解项之间的物理关联进行了研究。观测点的瞬时声压主要由下游圆柱产生的声压主导。由于上游涡脱落对下游圆柱的涡脱落的影响,导致下游升力系数频谱及观测点总噪声频谱呈现次级峰的现象。此外,通过希尔伯特变换发现观测点的声压脉动值不受上下游旋涡脱落的相位差影响。研究结果能为后续降低双圆柱气动噪声的研究做出贡献,给工程降噪问题提供参考。

     

  • 图 1  X-Y平面上的计算网格

    Figure 1.  Computational grids of X-Y plane

    图 2  上下游圆柱表面时均压力系数Cp分布

    Figure 2.  Distribution of time-averaged pressure coefficient Cp on the surface of upstream and downstream cylinders

    图 3  上下游圆柱表面时均脉动压力系数Cp分布

    Figure 3.  Distribution of root mean square Cp of pressure coefficient disturbance on the surface of upstream and downstream cylinders

    图 4  观测点处的声压级噪声功率谱密度

    Figure 4.  Power spectral density of sound pressure level at observation point

    图 5  远场声压级指向分布图(r/D=33.74)

    Figure 5.  Directivity of Sound Pressure Level at r/D=33.74

    图 6  Q值为1 000的瞬时等值面图

    Figure 6.  Instantaneous isosurfaces with Q=1 000 and corresponding streamwise velocity

    图 7  流场平均压力分布

    Figure 7.  Pressure distribution of flow field

    图 8  上下游圆柱阻力系数及升力系数随时间变化

    Figure 8.  Time history of drag coefficients and lift coefficients on the surface of upstream and downstream cylinders

    图 9  上下游圆柱阻力系数及升力系数频谱

    Figure 9.  Frequency spectra of drag coefficients and lift coefficients on the surface of upstream and downstream cylinders

    图 10  上下游圆柱升力系数相位差的时间演化

    Figure 10.  Time history of lift coefficient phase difference between upstream and downstream cylinders

    图 11  上下游圆柱升力系数相位差的概率密度分布

    Figure 11.  Probability distribution of lift coefficient phase difference between upstream and downstream cylinders

    图 12  上下游圆柱声压及分解项随时间变化

    Figure 12.  Time history of acoustic pressure and its decompositions on the surface of upstream and downstream cylinders

    图 13  上下游圆柱声压分解项的声压级噪声功率谱密度

    Figure 13.  Sound pressure level noise power spectrum of sound pressure decomposition on the surface of upstream and downstream cylinders

    图 14  上下游圆柱声压相位差的时间演化

    Figure 14.  Time history of acoustic pressure phase difference between upstream and downstream cylinders

    图 15  上下游圆柱声压相位差的概率密度分布

    Figure 15.  Probability distribution of acoustic pressure phase difference between upstream and downstream cylinders

    图 16  基于上下游圆柱声压相位差的选定观测点声压脉动值条件平均分布

    Figure 16.  Conditional average of acoustic pressure pulsation at selected observation points based on acoustic pressure phase difference between upstream and downstream cylinders

    表  1  上下游圆柱气动特性统计结果

    Table  1.   Statistic results of aerodynamic properties for upstream and downstream cylinders

    算例编号 网格节点 上游平均阻力系数 下游平均阻力系数 涡脱落频率/Hz
    1 1.09×106 0.552 9 0.427 4 190.7
    2 2.38×106 0.579 7 0.452 5 181.6
    3 6.65×106 0.455 5 0.438 2 187.6
    Min[25] N/A 0.334 0.294 153
    Max[25] N/A 0.800 0.518 226
    下载: 导出CSV

    表  2  相关项之间的相关系数

    Table  2.   Correlation coefficients between related terms

    声压
    0.119 3 0.993 9 N/A N/A -0.149 4
    N/A N/A 0.164 8 0.988 1 0.936 5
    下载: 导出CSV
  • [1] 乔渭阳, 许开富, 武兆伟, 等. 大型客机起飞着陆过程噪声辐射特性对比分析[J]. 航空学报, 2008, 29(3): 534-541. doi: 10.3321/j.issn:1000-6893.2008.03.003

    QIAO W Y, XU K F, WU Z W, et al. Noise radiation of large-scale commercial aircraft in take-off and landing[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 534-541(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.003
    [2] CHOW L C, MAU K, REMY H. Landing gears and high lift devices airframe noise research[C]//8th AIAA/CEAS Aeroacoustics Conference & Exhibit. Reston: AIAA, 2002.
    [3] LOCKARD D, KHORRAMI M, CHOUDHARI M, et al. Tandem cylinder noise predictions[C]//13th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2007: 3450.
    [4] JENKINS L, KHORRAMI M, CHOUDHARI M, et al. Characterization of unsteady flow structures around tandem cylinders for component interaction studies in airframe noise[C]//11th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2005.
    [5] JENKINS L, NEUHART D, MCGINLEY C, et al. Measurements of unsteady wake interference between tandem cylinders[C]//36th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2006.
    [6] HUTCHESON F V, BROOKS T F. Noise radiation from single and multiple rod configurations[J]. International Journal of Aeroacoustics, 2012, 11(3-4): 291-333. doi: 10.1260/1475-472X.11.3-4.291
    [7] FARASSAT F, CASPER J. Towards an airframe noise prediction methodology: Survey of current approaches[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
    [8] BRōS G A, FREED D, WESSELS M, et al. Flow and noise predictions for the tandem cylinder aeroacoustic benchmarka[J]. Physics of Fluids, 2012, 24(3): 036101. doi: 10.1063/1.3685102
    [9] PAPAIOANNOU G V, YUE D K P, TRIANTAFYLLOU M S, et al. Three-dimensionality effects in flow around two tandem cylinders[J]. Journal of Fluid Mechanics, 2006, 558: 387. doi: 10.1017/S0022112006000139
    [10] 刘敏, 刘飞, 胡亚涛, 等. 三维串列双圆柱绕流气动流场及声场模拟[J]. 工程热物理学报, 2008, 29(3): 403-406. doi: 10.3321/j.issn:0253-231X.2008.03.011

    LIU M, LIU F, HU Y T, et al. Aerodynamics and aeroacoustics numerical simulation of flow past two circular cylinders in tandem arrangements[J]. Journal of Engineering Thermophysics, 2008, 29(3): 403-406(in Chinese). doi: 10.3321/j.issn:0253-231X.2008.03.011
    [11] 赵良举, 杨南奇, 吴朵, 等. 横掠二维串列双圆柱绕流气动噪声的数值模拟[J]. 重庆大学学报, 2009, 32(8): 943-949. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE200908017.htm

    ZHAO L J, YANG N Q, WU D, et al. Aeroacoustics numerical simulation of flow past tow-dimensional two circular cylinders in tandem arrangements[J]. Journal of Chongqing University, 2009, 32(8): 943-949(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE200908017.htm
    [12] 龙双丽, 聂宏, 许鑫. 不同雷诺数下圆柱绕流气动噪声数值模拟[J]. 声学技术, 2011, 30(2): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201102001.htm

    LONG S L, NIE H, XU X. Numerical simulation of noise induced by flow around a cylinder at different Reynolds number[J]. Technical Acoustics, 2011, 30(2): 111-116(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201102001.htm
    [13] 余雷, 宋文萍, 韩忠华, 等. 基于混合RANS/LES方法与FW-H方程的气动声学计算研究[J]. 航空学报, 2013, 34(8): 1795-1805. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201308006.htm

    YU L, SONG W P, HAN Z H, et al. Aeroacoustic noise prediction using hybrid RANS/LES method and FW-H equation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1795-1805(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201308006.htm
    [14] 宁方立, 王善景, 马尧, 等. 串联圆柱体绕流气动噪声三维数值仿真[J]. 机械制造, 2014, 52(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG201401009.htm

    NING F L, WANG S J, MA Y, et al. Aeroacoustics numerical simulation of flow past three-dimensional two circular cylinders in tandem arrangements[J]. Machinery, 2014, 52(1): 21-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG201401009.htm
    [15] 高威, 陈国勇. 串列双圆柱绕流的气动噪声特性分析[J]. 计算机辅助工程, 2018, 27(4): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201804009.htm

    GAO W, CHEN G Y. Characteristic analysis on aerodynamical noise of flow around tandem double cylinders[J]. Computer Aided Engineering, 2018, 27(4): 41-46(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201804009.htm
    [16] 周凯, 王震, 陈维山, 等. 格子Boltzmann方法在串列双圆柱绕流数值模拟中的应用研究[J]. 船舶力学, 2018, 22(2): 144-155. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201802003.htm

    ZHOU K, WANG Z, CHEN W S, et al. Application of lattice Boltzmann method in flow past two cylinders in tandem arrangement[J]. Journal of Ship Mechanics, 2018, 22(2): 144-155(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201802003.htm
    [17] DU B X, ZHANG W P, MING P J. Numerical simulation of flow-induced noise of two circular cylinders in tandem and side-by-side arrangements using a viscous/acoustic splitting method[J]. Journal of Ship Mechanics, 2019, 23(9): 1122-1138. http://en.cnki.com.cn/Article_en/CJFDTotal-CBLX201909009.htm
    [18] 葛明明, 王圣业, 王光学, 等. 基于混合雷诺平均/高精度隐式大涡模拟方法的高升力体气动噪声模拟[J]. 物理学报, 2019, 68(20): 190-202. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201920021.htm

    GE M M, WANG S Y, WANG G X, et al. Aeroacoustic simulation of the high-lift airfoil using hybrid Reynolds averaged Navier-Stokes/high-order implicit large eddy simulation method[J]. Acta Physica Sinica, 2019, 68(20): 190-202(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201920021.htm
    [19] 周盼, 张权, 率志君, 等. 离心泵进水口形式设计及其对振动噪声的影响[J]. 排灌机械工程学报, 2015, 33(1): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201501006.htm

    ZHOU P, ZHANG Q, SHUAI Z J, et al. Inlet design and its influence on vibration and noise of centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(1): 16-19(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201501006.htm
    [20] 蔡晓彤, 施卫东, 张德胜, 等. 基于直接边界元法的潜水排污泵内流噪声数值模拟[J]. 排灌机械工程学报, 2018, 36(12): 1264-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201812011.htm

    CAI X T, SHI W D, ZHANG D S, et al. Numerical simulation of internal flow-induced noise in submersible sewage pump based on the direct boundary element method[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(12): 1264-1269(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201812011.htm
    [21] 余昊谦, 王洋, 韩亚文, 等. 旋涡自吸泵流致噪声模拟及降噪[J]. 排灌机械工程学报, 2019, 37(4): 302-306. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201904006.htm

    YU H Q, WANG Y, HAN Y W, et al. Numerical study on flow-induced noise and noise reduction of self-priming vortex pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(4): 302-306(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201904006.htm
    [22] DI FRANCESCANTONIO P. A new boundary integral formulation for the prediction of sound radiation[J]. Journal of Sound and Vibration, 1997, 202(4): 491-509. https://www.sciencedirect.com/science/article/abs/pii/S0022460X96908433
    [23] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183-200. https://www.mendeley.com/catalogue/4c9b848a-b764-389c-9c84-9ecb098ed47a/
    [24] FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321-342. https://ui.adsabs.harvard.edu/abs/1969RSPTA.264..321F/abstract
    [25] LOCKARD D. Summary of the tandem cylinder solutions from the benchmark problems for airframe noise computations-I Workshop[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  501
  • HTML全文浏览量:  80
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 录用日期:  2020-10-18
  • 网络出版日期:  2021-10-20

目录

    /

    返回文章
    返回
    常见问答