留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂结构焊缝缺陷双线阵全聚焦超声成像方法

周正干 滕利臣 李洋

周正干, 滕利臣, 李洋等 . 复杂结构焊缝缺陷双线阵全聚焦超声成像方法[J]. 北京航空航天大学学报, 2021, 47(12): 2407-2413. doi: 10.13700/j.bh.1001-5965.2020.0464
引用本文: 周正干, 滕利臣, 李洋等 . 复杂结构焊缝缺陷双线阵全聚焦超声成像方法[J]. 北京航空航天大学学报, 2021, 47(12): 2407-2413. doi: 10.13700/j.bh.1001-5965.2020.0464
ZHOU Zhenggan, TENG Lichen, LI Yanget al. Dual-linear-array TFM ultrasonic imaging method for weld defects of complex structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2407-2413. doi: 10.13700/j.bh.1001-5965.2020.0464(in Chinese)
Citation: ZHOU Zhenggan, TENG Lichen, LI Yanget al. Dual-linear-array TFM ultrasonic imaging method for weld defects of complex structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2407-2413. doi: 10.13700/j.bh.1001-5965.2020.0464(in Chinese)

复杂结构焊缝缺陷双线阵全聚焦超声成像方法

doi: 10.13700/j.bh.1001-5965.2020.0464
基金项目: 

声场声信息国家重点实验室项目 SKLA201810

详细信息
    通讯作者:

    周正干. E-mail: zzhenggan@buaa.edu.cn

  • 中图分类号: V262;TB553

Dual-linear-array TFM ultrasonic imaging method for weld defects of complex structure

Funds: 

Research Foundation of the State Key Laboratory of Acoustics SKLA201810

More Information
  • 摘要:

    某型航空发动机高温合金盘由涡轮盘本体和外层整体叶片环焊接而成,采用常规单通道超声方法检测焊接面缺陷时,存在检测分辨率低、信噪比差等问题,为此,提出了一种采用两组线性阵列换能器的检测方案。利用全聚焦方法(TFM)对焊接面缺陷进行成像表征,与常规全聚焦方法不同,阵列孔径和波形模式均能随检测深度动态变化,其最优参数通过理论仿真确定。制备了含预埋缺陷的航空发动机高温合金盘试样,开展了检测实验。结果表明:提出的双线阵全聚焦超声成像方法能有效提高高温合金盘未焊合面积型缺陷的检测能力,是一种可行的检测方案。

     

  • 图 1  双线性阵列换能器耦合示意图

    Figure 1.  Schematic diagram of dual-linear-array transducer coupling

    图 2  全聚焦方法原理

    Figure 2.  Principle of total focusing method

    图 3  高温合金盘全矩阵数据的仿真模型示意图

    Figure 3.  Schematic diagram of simulation model of full matrix data for superalloy disk

    图 4  仿真模型不同缺陷位置示意图

    Figure 4.  Schematic diagram of different defect locations in simulation model

    图 5  仿真模型包含缺陷区域的矩形窗

    Figure 5.  Rectangular window where simulation model contains defect areas

    图 6  矩形缺陷不同位置的检测成像结果

    Figure 6.  Detection and imaging results of rectangular defects in different positions

    图 7  声波在不同位置对缺陷入射、反射声线

    Figure 7.  Sound wave's incident and reflected sound ray on the defect in different positions

    图 8  不同模式下DSNR值与缺陷z坐标的关系曲线

    Figure 8.  DSNR value versus defect at z-coordinate in different modes

    图 9  高温合金盘模拟试样及缺陷分布

    Figure 9.  Superalloy disk simulation specimen and defect distribution

    图 10  矩形缺陷不同截面的检测成像结果

    Figure 10.  Detection and imaging results of rectangular defects at different cross sections

    表  1  不同位置矩形缺陷在4种模式下的DSNR值统计

    Table  1.   DSNR values for rectangular defects of different positions in four modes

    缺陷位置/mm DSNR/dB
    AL-BL AS-BS AS-BL AL-BS
    8.3 34.41 34.63 52.47 28.11
    18.3 36.90 39.60 35.05 30.35
    28.3 33.81 37.17 37.17 48.77
    下载: 导出CSV
  • [1] 曲伸, 李英, 倪建成, 等. 航空发动机先进焊接技术应用[J]. 航空制造技术, 2015(20): 53-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201520008.htm

    QU S, LI Y, NI J C, et al. Application of advanced welding technology in aeroengine[J]. Aeronautical Manufacturing Technology, 2015(20): 53-55(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201520008.htm
    [2] RAUJOL S, PETTINARI F, LOCQ D, et al. Creep straining micro-mechanisms in a powder metallurgical nickel based superalloy[J]. Materials Science and Engineering: A, 2004, 387-389: 678-682. doi: 10.1016/j.msea.2004.02.091
    [3] TERZI S, COUTURIER R, GUETAZ L, et al. Modelling the plastic deformation during high temperature creep of a powder metallurgy coarse grained superalloy[J]. Materials Science and Engineering: A, 2008, 483-484: 598-601. doi: 10.1016/j.msea.2006.10.186
    [4] POLLOCK T M, TIN S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties [J]. Jornal of Propulsion and Power, 2006, 22(2): 361. doi: 10.2514/1.18239
    [5] 张国庆, 张义文, 郑亮, 等. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201909006.htm

    ZHANG G Q, ZHANG Y W, ZHENG L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application[J]. Acta Metallurgica Sinica, 2019, 55(9): 1133-1144(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201909006.htm
    [6] RASISSON G. Evolution of PM nickel base superalloy processes and products[J]. Powder Metallurgy, 2008, 50(1): 10-13. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020414279995.html
    [7] CHEN J, DONG J, ZHANG M, et, al. Deformation mechanisms in a fine-grained Udimet 720LI nickel-base super alloy with high volume fractions of γ' phases[J]. Materials Science and Engineering: A, 2016, 673: 122-134. doi: 10.1016/j.msea.2016.07.068
    [8] YANG P, CHENG B, SHI K R. A novel method to design sparse linear arrays for ultrasonic phased array[J]. Ultrasonics, 2006, 44: 717-721. doi: 10.1016/j.ultras.2006.05.131
    [9] CHATILLON S, CARRIAUX G, SERRE M, et al. Ultrasonic non-destructive testing of pieces of complex geometry with a flexible array transducer[J]. Ultrasonic, 2000, 38: 131-134. doi: 10.1016/S0041-624X(99)00181-X
    [10] PUEL B, LESSELIER D, CHATILLON S, et al. Optimization of ultrasonic arrays design and setting using a differential evolution[J]. NDT & E International, 2011, 44: 797-803. http://www.sciencedirect.com/science/article/pii/S0963869511001204
    [11] 杨平华, 林莉, 刘春伟, 等. 相控阵声束焦距及换能器孔径综合有现货的实验研究[J]. 无损检测, 2011, 35(3): 9-13.

    YANG P H, LIN L, LIU C W, et al. Experimental study on the integrated optimization of focus length and transducer aperture for phased array beam[J]. Nondestructive Testing, 2011, 35(3): 9-13(in Chinese).
    [12] 涂春磊, 邹建华, 强天鹏, 等. 对接焊缝相控阵超声检测可靠性的CIVA仿真与试验[J]. 无损检测, 2013, 35(11): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201311007.htm

    TU C L, ZOU J H, QIANG T P, et al. Reliability analysis of phased ultrasonic testing for butt weld by CIVA simulation and experiment[J]. Nondestructive Testing, 2013, 35(11): 22-26(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201311007.htm
    [13] 李莹莹, 陈军, 林莉. 面积型缺陷相控阵超声检测可靠性的研究[J]. 无损探伤, 2014, 38(4): 6-9. doi: 10.3969/j.issn.1671-4423.2014.04.002

    LI Y Y, CHEN J, LIN L. Research on the reliability of phased array ultrasonic testing on planar defects[J]. Nondestructive Testing Technology, 2014, 38(4): 6-9(in Chinese). doi: 10.3969/j.issn.1671-4423.2014.04.002
    [14] HUNTER A J, DRINKWATER B W, WILCOX P D. The wave number algorithm for full matrix imaging using an ultrasonic array[J]. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(11): 2450-2462. doi: 10.1109/TUFFC.952
    [15] VELICHKO A, WILCOX P D. Reversible back-propagation imaging algorithm for post processing of ultrasonic array data[J]. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(11): 2492-2503. doi: 10.1109/TUFFC.2009.1336
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  55
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 录用日期:  2020-09-30
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答