留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不确定性的航空装备体系保障性评估

崔利杰 丛继平 丁刚 任博 王毅 黎纪宏

崔利杰, 丛继平, 丁刚, 等 . 基于不确定性的航空装备体系保障性评估[J]. 北京航空航天大学学报, 2021, 47(12): 2452-2461. doi: 10.13700/j.bh.1001-5965.2020.0490
引用本文: 崔利杰, 丛继平, 丁刚, 等 . 基于不确定性的航空装备体系保障性评估[J]. 北京航空航天大学学报, 2021, 47(12): 2452-2461. doi: 10.13700/j.bh.1001-5965.2020.0490
CUI Lijie, CONG Jiping, DING Gang, et al. Supportability evaluation of aviation equipment system based on uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2452-2461. doi: 10.13700/j.bh.1001-5965.2020.0490(in Chinese)
Citation: CUI Lijie, CONG Jiping, DING Gang, et al. Supportability evaluation of aviation equipment system based on uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2452-2461. doi: 10.13700/j.bh.1001-5965.2020.0490(in Chinese)

基于不确定性的航空装备体系保障性评估

doi: 10.13700/j.bh.1001-5965.2020.0490
基金项目: 

国家自然科学基金 72001213

“十三五”装备预研共同技术课题 41402030401

详细信息
    通讯作者:

    崔利杰. E-mail: lijie_cui@163.com

  • 中图分类号: V37

Supportability evaluation of aviation equipment system based on uncertainty

Funds: 

National Natural Science Foundation of China 72001213

The 13th Five Year Plan Equipment Pre-research Common Technical Topic 41402030401

More Information
  • 摘要:

    针对航空装备体系结构复杂、要素繁多、耦合性强的特点,对其保障流程进行了研究。采用多Agent建模技术开展航空装备体系保障性仿真建模,并进行分析评估;考虑到保障过程中大量存在的主客观不确定性因素,分别采用模糊变量和随机分布2种变量形式予以描述;为符合客观变量动态时变的特点,将基于交叉熵的最大似然估计和哈密顿蒙特卡罗方法相结合,实现基于信息更新的仿真参数描述,优化航空装备体系保障仿真模型。以一个典型战训任务为例,验证了所提方法的可行性和准确性。

     

  • 图 1  航空装备体系保障流程

    Figure 1.  Aviation equipment system support process

    图 2  航空装备体系保障仿真系统

    Figure 2.  Aviation equipment system support simulation system

    图 3  模糊变量λ水平截集描述

    Figure 3.  Horizontal cut set description of fuzzy variable λ

    图 4  参数优化流程

    Figure 4.  Parameter optimization flowchart

    图 5  累计的飞机完好率

    Figure 5.  Cumulative aircraft readiness rate

    图 6  每天的飞机完好率

    Figure 6.  Daily aircraft readiness rate

    图 7  不同参数放大系数下飞机完好率指标变化

    Figure 7.  Changes of aircraft readiness rate index under different parameter magnification factors

    图 8  飞机完好率结果分布

    Figure 8.  Results distribution of aircraft readiness rate

    图 9  飞机完好率变化

    Figure 9.  Changes of aircraft readiness rate

    图 10  实际完好率与拟合结果对比

    Figure 10.  Comparison of actual readiness rate and fitting result

    表  1  航空装备体系保障流程参数描述

    Table  1.   Aviation equipment system support process parameter description

    类别 参数
    战训任务参数 飞行日安排
    单日飞行批次
    每批飞行架次
    每日参训任务持续时间
    年总计划飞行时间
    装备可靠性参数 MTBF
    飞机初始飞行时间
    维修性参数 定检时间
    大修时间
    检查时间
    保障性参数 航材备件申领时间
    车辆申领延误时间
    大修厂维修能力
    修理厂定检能力
    工具数量
    航材备件初始数量
    保障设备数量
    下载: 导出CSV

    表  2  主要仿真参数

    Table  2.   Main simulation parameters

    参数 数值
    飞行日安排
    单日飞行批次 3
    每批飞行架次 4
    每日参训任务持续时间/h 1.5
    年总计划飞行时间/h 4 500
    分系统1 MTBF/h 60
    分系统2 MTBF/h 100
    分系统3 MTBF/h 69
    分系统4 MTBF/h 94
    分系统5 MTBF/h 126
    分系统6 MTBF/h 50
    分系统7 MTBF/h 83
    分系统8 MTBF/h 94
    分系统9 MTBF/h 78
    分系统10 MTBF/h 80
    分系统11 MTBF/h 132
    分系统12 MTBF/h 106
    大修时间/d 300
    定检时间/d 14
    检查时间/min 22.5
    航材备件申领时间/d 1
    车辆申领延误时间/min 3
    大修厂维修能力 2
    修理厂定检能力 4
    工具数量 24
    航材备件初始数量 5
    保障设备数量 24
    下载: 导出CSV

    表  3  客观不确定变量分布参数

    Table  3.   Objective uncertain variable distribution parameters

    分系统序号 a b k
    1 0.010 1 0.006 1 0.869 5
    2 0.006 2 0.004 1.113 7
    3 0.008 9 0.005 1 0.869 4
    4 0.005 0.005 0.631 3
    5 0.003 8 0.003 6 0.623 7
    6 0.011 7 0.007 5 0.860 5
    7 0.005 9 0.005 1 0.589 9
    8 0.005 7 0.003 7 0.565 3
    9 0.008 4 0.003 5 0.769 8
    10 0.006 3 0.005 3 0.628 5
    11 0.004 4 0.002 6 0.698
    12 0.009 4 0.001 5 37.380 2
    下载: 导出CSV

    表  4  主观不确定变量分布参数

    Table  4.   Subjective uncertain variable distribution parameters

    主观不确定性变量 三角模糊数
    大修时间/d (280,300,320)
    定检时间/d (7,14,21)
    检查时间/min (10,22.5,25)
    航材备件申领时间/d (0.5,1,1.5)
    车辆申领延误时间/min (2,3,4)
    下载: 导出CSV
  • [1] 丁刚, 张琳, 崔利杰, 等. 基于任务的航空装备保障体系概念建模研究[J]. 军事运筹与系统工程, 2020, 34(1): 39-46. doi: 10.3969/j.issn.1672-8211.2020.01.008

    DING G, ZHANG L, CUI L J, et al. Research on concept modeling of mission-based aviation equipment support system of systems[J]. Military Operations Research and Systems Engineering, 2020, 34(1): 39-46(in Chinese). doi: 10.3969/j.issn.1672-8211.2020.01.008
    [2] 邢彪, 曹军海, 宋太亮, 等. 基于Agent的维修保障仿真系统设计与实现[J]. 系统仿真学报, 2017, 29(1): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201701018.htm

    XING B, CAO J H, SONG T L, et al. Design and implementation for maintenance support simulation system based on Agent[J]. Journal of System Simulation, 2017, 29(1): 129-135(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201701018.htm
    [3] 冯强, 曾声奎, 康锐. 基于多主体的舰载机综合保障过程建模方法[J]. 系统工程与电子技术, 2010, 32(1): 211-216. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201001047.htm

    FENG Q, ZENG S K, KANG R. Multiagent-based modeling method for integrated logistic support of the carrier aircraft[J]. Systems Engineering and Electronics, 2010, 32(1): 211-216(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201001047.htm
    [4] 郭霖瀚, 康锐, 康晓明. 装备群保障规模预测方法研究[J]. 系统工程与电子技术, 2009, 31(5): 1262-1265. doi: 10.3321/j.issn:1001-506X.2009.05.058

    GUO L H, KANG R, KANG X M. Equipments support footprint forecast method research[J]. Systems Engineering and Electronics, 2009, 31(5): 1262-1265(in Chinese). doi: 10.3321/j.issn:1001-506X.2009.05.058
    [5] MEHDIFAR F, BECHLIOULIS C P, HASHEMZADEH F, et al. Prescribed performance distance-based formation control of multi-agent systems[J]. Automatica, 2020, 119: 109086. doi: 10.1016/j.automatica.2020.109086
    [6] FLOREZ L J, CARAFFINI F, PARRA C, et al. Cooperative and distributed decision-making in a multi-agent perception system for improvised land mines detection[J]. Information Fusion, 2020, 64: 32-49. doi: 10.1016/j.inffus.2020.06.009
    [7] 赵星贺, 周斌, 封会娟, 等. 基于蒙特卡罗仿真评价车辆装备预防性维修间隔期方法[J]. 兵工自动化, 2019, 38(11): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201911022.htm

    ZHAO X H, ZHOU B, FENG H J, et al. Evaluation method of preventive maintenance interval of vehicle equipment based on Monte Carlo simulation[J]. Ordnance Industry Automation, 2019, 38(11): 92-96(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201911022.htm
    [8] AMIN M, MOHAMMAD R F, DAVOOD D, et al. Grey-fuzzy solution for multi-objective linear programming with interval coefficients[J]. Grey Systems: Theory and Application, 2018, 8(3): 312-327. doi: 10.1108/GS-01-2018-0007
    [9] SURADEI D, JESSADA K, WAREE K. State-of-charge estimation based on theory of evidence and interval analysis with differential evolution optimization[J]. Annals of Operations Research, 2019, 300: 399-414. doi: 10.1007/s10479-019-03390-0
    [10] AVRILIA K, NIKOS M, BASIL P. Fuzzy reasoning in the investigation of seismic behavior[J]. Mathematical Methods in the Applied Sciences, 2020, 43(13): 7747-7757. doi: 10.1002/mma.6184
    [11] YOUSEFI N, COIT D W, SONG S. Reliability analysis of systems considering clusters of dependent degrading components[J]. Reliability Engineering & System Safety, 2020, 202: 107005. http://www.sciencedirect.com/science/article/pii/S0951832020305068
    [12] SHI Y, ZHU W, XIANG Y, et al. Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement[J]. Reliability Engineering & System Safety, 2020, 202: 107042. http://www.sciencedirect.com/science/article/pii/S0951832020305433
    [13] PETCHROMPO S, LI H, ERGUIDO A, et al. A value-based approach to optimizing long-term maintenance plans for a multi-asset k-out-of-N system[J]. Reliability Engineering & System Safety, 2020, 200: 106924. http://www.sciencedirect.com/science/article/pii/S0951832019311470
    [14] GAHLOT M, SINGH V V, AYAGI H I, et al. Stochastic analysis of a two units' complex repairable system with switch and human failure using copula approach[J]. Life Cycle Reliability and Safety Engineering, 2019, 9: 1-11. http://www.researchgate.net/publication/337805079_Stochastic_analysis_of_a_two_units'_complex_repairable_system_with_switch_and_human_failure_using_copula_approach
    [15] THACH T T, BRIS R, VOLF P, et al. Non-linear failure rate: A Bayes study using Hamiltonian Monte Carlo simulation[J]. International Journal of Approximate Reasoning, 2020, 123: 55-76. doi: 10.1016/j.ijar.2020.04.007
    [16] ZHU T. Reliability estimation for two-parameter Weibull distribution under block censoring[J]. Reliability Engineering & System Safety, 2020, 203: 107071. http://www.sciencedirect.com/science/article/pii/S095183202030572X
    [17] ALMALKI S J, YUAN J. A new modified Weibull distribution[J]. Reliability Engineering & System Safety, 2013, 111: 164-170. http://uksacb.org/sites/default/files/webform/Research%20Paper1_A%20new%20modified%20Weibull%20distribution_0.pdf
    [18] 丛继平, 崔利杰, 丁刚, 等. 基于目标驱动的航空维修保障体系仿真研究[J]. 系统仿真学报, 2021, 33(9): 2157-2165. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202109018.htm

    CONG J P, CUI L J, DING G, et al. Simulation on aviation maintenance support system based on goal-driven[J]. Journal of System Simulation, 2021, 33(9): 2157-2165(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202109018.htm
    [19] 孙璐璐, 滕曰, 黄锐. 飞机完好率预测仿真研究[J]. 兵器装备工程学报, 2017, 38(8): 71-75. doi: 10.11809/scbgxb2017.08.017

    SUN L L, TENG Y, HUANG R. Simulation of aircraft readiness rate prediction[J]. Journal of Ordnance Equipment Engineering, 2017, 38(8): 71-75(in Chinese). doi: 10.11809/scbgxb2017.08.017
    [20] DAMIAN D N, AJAY B C. NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior lateral line primordium[J]. Seminars in Cell & Developmental Biology, 2020, 100: 186-198. http://www.sciencedirect.com/science/article/pii/S1084952119300497
    [21] KROESE D P, POROTSKY S, RUBINSTEIN R Y. The cross-entropy method for continuous multi-extremal optimization[J]. Methodology and Computing in Applied Probability, 2006, 8(3): 383-407. doi: 10.1007/s11009-006-9753-0
    [22] BRAIBANT V, OUDSHOOM A, BOYER C, et al. Nondeterministic "possibilistic" approaches for structural analysis and optimal design[J]. AIAA Journal, 1999, 37(10): 1298-1303. doi: 10.2514/2.599
    [23] LI Z, ZHANG T, CHENG S, et al. Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference[J]. Machine Learning, 2019, 108(8-9): 1701-1727. doi: 10.1007/s10994-019-05825-y
    [24] STARCZEWSKI J T, GOETZEN P, NAPOLI C. Triangular fuzzy-rough set based fuzzification of fuzzy rule-based systems[J]. Journal of Artificial Intelligence and Soft Computing Research, 2020, 10(4): 271-285. doi: 10.2478/jaiscr-2020-0018
    [25] CHENG K, LU Z Z, ZHOU Y C. Global sensitivity analysis using support vector regression[J]. Applied Mathematical Modelling, 2017, 49: 587-598. doi: 10.1016/j.apm.2017.05.026
    [26] QUETZERI-SANTIAGO M A, CASTREJÓN-PITA J R, CAS-TREJÓN-PITA A A. On the analysis of the contact angle for impacting droplets using a polynomial fitting approach[J]. Experiments in Fluids, 2020, 61(6): 143. doi: 10.1007/s00348-020-02971-1
    [27] FARAVELLI L. Response-surface approach for reliability analysis[J]. Journal of Engineering Mechanics, 1989, 115(12): 2763-2781. doi: 10.1061/(ASCE)0733-9399(1989)115:12(2763)
    [28] LI H S, LU Z Z, YUE Z F. Support vector machine for structural reliability analysis[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1295-1303. doi: 10.1007/s10483-006-1001-z
    [29] HURTADO J E, ALVAREZ D A. Neural-network-based reliability analysis: A comparative study[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(1-2): 113-132. doi: 10.1016/S0045-7825(01)00248-1
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  38
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-01
  • 录用日期:  2021-01-17
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答