留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗控制饱和的鲁棒非线性飞行控制方法

孙冰 陈伟

孙冰, 陈伟. 抗控制饱和的鲁棒非线性飞行控制方法[J]. 北京航空航天大学学报, 2021, 47(12): 2475-2483. doi: 10.13700/j.bh.1001-5965.2020.0473
引用本文: 孙冰, 陈伟. 抗控制饱和的鲁棒非线性飞行控制方法[J]. 北京航空航天大学学报, 2021, 47(12): 2475-2483. doi: 10.13700/j.bh.1001-5965.2020.0473
SUN Bing, CHEN Wei. Robust nonlinear flight control method against control saturation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2475-2483. doi: 10.13700/j.bh.1001-5965.2020.0473(in Chinese)
Citation: SUN Bing, CHEN Wei. Robust nonlinear flight control method against control saturation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2475-2483. doi: 10.13700/j.bh.1001-5965.2020.0473(in Chinese)

抗控制饱和的鲁棒非线性飞行控制方法

doi: 10.13700/j.bh.1001-5965.2020.0473
基金项目: 

吉林省教育厅“十三五”科学技术基金 JJKH20200252KJ

详细信息
    通讯作者:

    孙冰, E-mail: ai-bb@163.com

  • 中图分类号: V249.1

Robust nonlinear flight control method against control saturation

Funds: 

Science and Technology Fund of Jilin Provincial Education Department during the 13th Five Year Plan JJKH20200252KJ

More Information
  • 摘要:

    飞行器在大包线范围内作机动飞行时,其舵面和发动机易达到饱和,该现象不仅会对闭环系统的稳定性造成影响,而且会大大缩短发动机等关键部件的使用寿命。针对该问题,设计了一种抗饱和非线性飞行控制方法。首先,建立飞行器的严格反馈非线性模型。然后,采用自适应反步设计思想设计得到舵控和发动机转速控制指令,由径向基函数(RBF)网络对建模误差进行逼近。针对控制饱和问题,分别设计了相应的抗饱和动态补偿系统。通过建立闭环控制系统的李雅普诺夫函数,由稳定性理论确定得到RBF网络的更新权值和抗饱和动态补偿系统的结构参数,确保所设计的闭环控制系统全局稳定。最后,仿真结果表明,在出现控制饱和时,抗饱和动态补偿系统可对控制指令进行实时修正,帮助系统较快脱离饱和状态,系统饱和时间缩短了30%~60%,同时具有较高的指令跟踪精度。

     

  • 图 1  抗舵偏饱和控制原理

    Figure 1.  Schematic diagram of control against rudder deflection saturation

    图 2  抗发动机转速饱和控制原理

    Figure 2.  Schematic diagram of control against engine speed saturation

    图 3  仿真1曲线

    Figure 3.  Curves of simulation 1

    图 4  仿真2曲线

    Figure 4.  Curves of simulation 2

  • [1] 孙径广, 孟庆鹏, 李传明. 带有落角约束的反舰导弹自适应饱和制导律设计[J]. 指挥控制与仿真, 2020, 42(3): 118-122. doi: 10.3969/j.issn.1673-3819.2020.03.022

    SUN J G, MENG Q P, LI C M. Adaptive saturated guidance law designed for anti-ship missile with terminal angular constraint[J]. Command Control & Simulation, 2020, 42(3): 118-122(in Chinese). doi: 10.3969/j.issn.1673-3819.2020.03.022
    [2] HU J C, ZHANG H H, WANG Z G. Hybrid adaptive control of spacecraft attitude with input saturation and external disturbance[J]. Journal of Guidance, Control, and Dynamices, 2019, 42(3): 642-649. doi: 10.2514/1.G003090
    [3] PAULO R A, MIOARA J, CHRISTOPHE L, et al. Stable model predictives strategy for rendezvous hovering phases allowing for control saturation[J]. Journal of Guidance, Control, and Dynamices, 2019, 42(8): 1658-1675. doi: 10.2514/1.G003558
    [4] HU Q L, TAN X, AKELLA M A. Fitie-time fault-tolerant spacecraft attitude control with torque saturation[J]. Journal of Guidance, Control, and Dynamices, 2017, 40(10): 2524-2537. doi: 10.2514/1.G002191
    [5] 刘田禾, 安昊, 王常虹. 高超声速飞行器的抗饱和切换控制[J]. 宇航学报, 2020, 41(3): 329-336. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202003010.htm

    LIU T H, AN H, WANG C H. Anti-windup switched control of hypersonic vehicle[J]. Journal of Astronautics, 2020, 41(3): 329-336(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202003010.htm
    [6] 刘田禾, 张立宪, 张瑞先, 等. 基于切换系统的高超声速飞行器建模及抗饱和控制方法: CN110244768A[P]. 2019-09-17.

    LIU T H, ZHANG L X, ZHANG R X, et al. Hypersonic vehicle modeling and anti saturation control method based on switched system: CN110244768A[P]. 2019-09-17(in Chinese).
    [7] 吴跃飞, 马大为, 乐贵高. 控制受限的火箭炮位置伺服系统鲁棒自适应反步控制[J]. 兵工学报, 2013, 34(4): 476-483. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201304016.htm

    WU Y F, MA D W, LE G G. Robust adaptive backstepping control for rocket launcher position servo system with constraint control[J]. Acta Armamentarii, 2013, 34(4): 476-483(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201304016.htm
    [8] 周洪波, 裴海龙, 贺跃帮. 状态受限的小型无人直升机轨迹跟踪控制[J]. 控制理论与应用, 2012, 29(6): 778-784. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201206013.htm

    ZHOU H B, PEI H L, HE Y B. Trajectory-tracking control for small unmanned helicopter with state constraints[J]. Control Theory & Applications, 2012, 29(6): 778-784(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201206013.htm
    [9] HERRMANN G, MENON P P, TURNER M C. Anti-windup synthesis for nonlinear dynamic inversion control schemes[J]. International Journal of Robust and Nonlinear Control, 2010, 20(13): 1465-1482. http://www.onacademic.com/detail/journal_1000034274483110_c47f.html
    [10] GUILLAUME J J. Fault-tolerant flight control and guidance systems[M]. Berlin: Springer, 2009: 118-119.
    [11] 孙超娇, 陈勇, 景博. 基于权值优化的多操纵面抗饱和控制分配策略[J]. 系统工程与电子技术, 2019, 41(6): 1351-1357. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201906024.htm

    SUN C J, CHEN Y, JING B. Anti-windup control allocation strategy for over-actuated aircraft based on weight optimization[J]. Systems Engineering and Electronics, 2019, 41(6): 1351-1357(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201906024.htm
    [12] 成高, 刘满园, 李宪强, 等. 再入飞行器大攻角飞行时的姿态控制律设计[J]. 宇航学报, 2017, 38(8): 847-854. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201708009.htm

    CHENG G, LIU M Y, LI X Q, et al. The attitude controller design for the reentry vehicle flying with high angle of attack[J]. Journal of Astronautics, 2017, 38(8): 847-854(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201708009.htm
    [13] 周丽, 姜长生, 文杰. 超机动飞行的非线性鲁棒自适应控制系统研究[J]. 系统工程与电子技术, 2008, 30(4): 710-714. doi: 10.3321/j.issn:1001-506X.2008.04.029

    ZHOU L, JIANG C S, WEN J. Research on robust and adaptive nonlinear control system of supermaneuverable fight[J]. Systems Engineering and Electronics, 2008, 30(4): 710-714(in Chinese). doi: 10.3321/j.issn:1001-506X.2008.04.029
    [14] 姜超, 宋科璞, 周海军. 基于L1自适应方法的尾坐式无人机控制律设计[J]. 兵工自动化, 2017, 36(8): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201708004.htm

    JIANG C, SONG K P, ZHOU H J. Control law design for tail-sitter UAV based on L1 adaptive control method[J]. Ordnance Industry Automation, 2017, 36(8): 14-19(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201708004.htm
    [15] 陈洁, 周绍磊, 宋召青. 高超声速飞行器迎角观测器及控制器设计[J]. 北京航空航天大学学报, 2011, 37(7): 827-832. https://bhxb.buaa.edu.cn/CN/Y2011/V37/I7/827

    CHEN J, ZHOU S L, SONG Z Q. Nonlinear modelling and open-loop dynamatics characteristics for one hypersonic aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7): 827-832(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I7/827
    [16] SONNEVELDT L, CHU Q P, MULDER J A. Nonlinear flight control design using constrained adaptive backstepping[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 322-335. http://www.researchgate.net/profile/Mohamed_Hamdy18/post/how_backstepping_controller_is_designed/attachment/59d61dd979197b807797ae61/AS:273701252075521@1442266871452/download/sonneveldt2007.pdf
  • 加载中
图(4)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  52
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-28
  • 录用日期:  2020-12-21
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答