留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一次性突发原则的TTE网络实时性能优化

郑重 赵露茜 何锋 熊华钢 卢广山

郑重, 赵露茜, 何锋, 等 . 基于一次性突发原则的TTE网络实时性能优化[J]. 北京航空航天大学学报, 2021, 47(12): 2503-2513. doi: 10.13700/j.bh.1001-5965.2020.0415
引用本文: 郑重, 赵露茜, 何锋, 等 . 基于一次性突发原则的TTE网络实时性能优化[J]. 北京航空航天大学学报, 2021, 47(12): 2503-2513. doi: 10.13700/j.bh.1001-5965.2020.0415
ZHENG Zhong, ZHAO Luxi, HE Feng, et al. Real-time performance optimization of TTE network based on 'pay bursts only once' principle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2503-2513. doi: 10.13700/j.bh.1001-5965.2020.0415(in Chinese)
Citation: ZHENG Zhong, ZHAO Luxi, HE Feng, et al. Real-time performance optimization of TTE network based on "pay bursts only once" principle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2503-2513. doi: 10.13700/j.bh.1001-5965.2020.0415(in Chinese)

基于一次性突发原则的TTE网络实时性能优化

doi: 10.13700/j.bh.1001-5965.2020.0415
基金项目: 

国家自然科学基金 62071023

详细信息
    通讯作者:

    何锋, E-mail: robinleo@buaa.edu.cn

  • 中图分类号: TP393.1

Real-time performance optimization of TTE network based on "pay bursts only once" principle

Funds: 

National Natural Science Foundation of China 62071023

More Information
  • 摘要:

    确定性通信的发展,促进了时间触发概念的引入。时间触发以太网(TTE)通过提供3种流量类别来支持混合安全性的实时应用:时间触发(TT)流量,具有完全的时间确定性;速率约束(RC)流量,具有确界的端到端延迟;尽力传(BE)流量。如何实现时间触发机制下RC流量实时性能的紧性分析,仍然是决定TTE网络顺利应用的开放式问题。在FIFO服务策略的假设下,将“一次性突发原则”的分析方法引入到TTE网络中,以观察该原则在时间触发网络性能分析中的影响。不同于航空电子全双工以太网(AFDX),具有更高优先级的TT流量会对RC流量的延迟分析产生关键影响,从而导致一次性突发分析的复杂性。通过建立聚合TT流量在及时阻断模式下的到达曲线模型,从而获得单条RC流量端到端的服务曲线模型,基于此实现了RC流量的最坏情况端到端延迟(WCD)评估,进一步完成了一次性突发原则下的分析对比。相较于已有工作,一次性突发原则可以得到RC流量更精确的最坏端到端延迟上界评估结果,有助于改善TTE网络性能评价紧性。通过A380拓扑组网案例的对比分析,相比于传统方法,所提方法RC流量平均延迟减少了12.05%。

     

  • 图 1  网络演算实例

    Figure 1.  Example of network calculus

    图 2  节点端口h的TT流量调度表

    Figure 2.  TT traffic schedule table at node port h

    图 3  相邻TT数据帧的帧间时间间隔

    Figure 3.  Time interval between two adjacent TT frames

    图 4  以bfTT1h, 0为基帧时流量τTT2及时阻断到达曲线

    Figure 4.  Timely blocking arrival curve of τTT2 with base frame bfTT1h, 0

    图 5  以bfTT1h, 0基帧时流量τTT3及时阻断到达曲线

    Figure 5.  Timely blocking arrival curve of τTT3 with base frame bfTT1h, 0

    图 6  以bfTT1h, 0为基帧TT流量及时阻断聚合到达曲线

    Figure 6.  Timely blocking aggregate arrival curve of TT flow with base frame bfTT1h, 0

    图 7  节点端口的聚合TT流量及时阻断到达曲线

    Figure 7.  Timely blocking arrival curve of aggregate TT flow at node port

    图 8  节点端口的聚合RC流量服务曲线

    Figure 8.  Service curve of aggregate RC flow at node port

    图 9  节点端口的一条RC流量可能的服务曲线

    Figure 9.  Possible service curve of a RC flow at node port

    图 10  RC流量端到端延迟上界

    Figure 10.  Upper bound of end-to-end delay of RC traffic

    图 11  RC流量基于不同取值的可能的服务曲线

    Figure 11.  Possible service curves of RC traffic based on different values

    图 12  TC1用例的网络拓扑结构

    Figure 12.  Network topology of TC1

    图 13  TC1用例RC流量延迟对比

    Figure 13.  Delay comparison of RC traffic in TC1

    图 14  TC3用例的网络拓扑结构

    Figure 14.  Network topology of TC3

    图 15  TC3用例RC流量延迟对比

    Figure 15.  Delay comparison of RC traffic in TC3

    图 16  TC4用例RC流量延迟对比

    Figure 16.  Delay comparison of RC traffic in TC4

    表  1  TC2用例实验结果对比

    Table  1.   Comparison of experimental results in TC2

    TC2 TT流量/条 RC流量平均延迟/μs 平均延迟优化比例/%
    本文方法 经典演算法
    1 40 920.544 1 033.268 10.91
    2 55 1 689.83 1 870.32 9.65
    2 70 2 353.387 2 585.009 8.96
    下载: 导出CSV
  • [1] Aerospace. Time-triggered Ethernet: SAE AS6802[S]. [S. l. ]: SAE International, 2011: 8-21.
    [2] KOPETZ H, ADEMAJ A, GRILLINGER P, et al. The time triggered Ethernet (TTE) design[C]//8th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing. Piscataway: IEEE Press, 2005: 22-33.
    [3] IEEE. IEEE standard for Ethernet: IEEE 802.3[S]. [S. l. ]: LAN/MAN Standards Committee, 2012: 17-26.
    [4] LEE Y H, RACHLIN E, SCANDURA P A. Safety and certification approaches for Ethernet-based aviation databuses: DOT/FAA/AR-05/52[R]. [S. l. ]: Federal Aviation Administration, 2005.
    [5] ARINC. Aircraft data network, Part 7, Avionics full-duplex switched Ethernet network: ARINC 664P7[S]. [S. l. ]: Aeronautical Radio INC, 2009: 9-18.
    [6] STEINER W, BAUER G, HALL B, et al. TTEthernet dataflow concept[C]//8th IEEE International Symposium on Network Computing and Applications. Piscataway: IEEE Press, 2009: 319-322.
    [7] STEINBACH T, LIM H T, KORF F, et al. Tomorrow's in-car interconnect A competitive evaluation of IEEE 802.1 AVB and time-triggered Ethernet (AS6802)[C]//2012 IEEE Vehicular Technology Conference (VTC Fall). Piscataway: IEEE Press, 2012: 1-5.
    [8] SUEN J, KEGLEY R, PRESTON J. Affordable avionic networks with Gigabit Ethernet assessing the suitability of commercial components for airborne use[C]//2013 Proceedings of IEEE Southeastcon. Piscataway: IEEE Press, 2013: 1-6.
    [9] TǍMŞA S D, POP P, STEINER W. Design optimization of TTEthernet-based distributed real-time systems[J]. Real-Time Systems, 2015, 51(1): 1-35. doi: 10.1007/s11241-014-9214-8
    [10] MAUCLAIR C, DURRIEU G. Analysis of real-time networks with Monte Carlo methods[J]. Progress in Flight Dynamics, Guidance, Navigation, Control, Fault Detection, and Avionics, 2013, 6: 501-514.
    [11] FRANCES F, FRABOUL C, GRIEU J. Using network calculus to optimize the AFDX network[J]. IEEE Transactions on Medical Imaging, 2006, 25(10): 1319-1328. doi: 10.1109/TMI.2006.880670
    [12] BAUER H, SCHARBARG J L, FRABOUL C. Improving the worst-case delay analysis of an AFDX network using an optimized trajectory approach[J]. IEEE Transactions on Industrial Informatics, 2010, 6(4): 521-533. doi: 10.1109/TII.2010.2055877
    [13] LI X T, SCHARBARG J, FRABOUL C. Improving end-to-end delay upper bounds on an AFDX network by integrating offsets in worst-case analysis[C]//IEEE Conference on Emerging Technologies and Factory Automation. Piscataway: IEEE Press, 2010: 1-8.
    [14] SCHARBARG J L, RIDOUARD F, FRABOUL C. A probabilistic analysis of end-to-end delays on an AFDX avionic network[J]. IEEE Transactions on Industrial Informatics, 2009, 5(1): 38-49. doi: 10.1109/TII.2009.2016085
    [15] ADNAN M, SCHARBARG J L, ERMONT J, et al. Model for worst case delay analysis of an AFDX network using timed automata[C]//IEEE Conference on Emerging Technologies and Factory Automation. Piscataway: IEEE Press, 2010: 1-4.
    [16] STEINER W. Synthesis of static communication schedules for mixed-criticality systems[C]//14th IEEE International Symposium on Object/Component/Service-Oriented Real-time Distributed Computing Workshops. Piscataway: IEEE Press, 2011: 11-18.
    [17] TAMAS S D, POP P, STEINER W. Timing analysis of rate-constrained traffic for the TTEthernet communication protocol[C]//18th International Symposium on Real-Time Distributed Computing. Piscataway: IEEE Press, 2015: 119-126.
    [18] ZHAO L X, XIONG H G, ZHENG Z, et al. Improving worst case latency analysis for rate-constrained traffic in the time-triggered Ethernet network[J]. IEEE Communications Letters, 2014, 18(11): 1927-1930. doi: 10.1109/LCOMM.2014.2358233
    [19] ZHAO L, POP P, LI Q J, et al. Timing analysis of rate-constrained traffic in TTEthernet using network calculus[J]. Real-Time Systems, 2017, 53(2): 254-287. doi: 10.1007/s11241-016-9265-0
    [20] 何锋. 机载网络技术基础[M]. 北京: 国防工业出版社, 2018.

    HE F. Fundamentals of airborne network[M]. Beijing: National Defense Industry Press, 2018(in Chinese).
    [21] STEINER W, DUTERTRE B. SMT-based formal verification of a TTEthernet synchronization function: In formal methods for industrial critical systems[M]. Berlin: Springer, 2010.
    [22] FIDLER M. Extending the network calculus pay bursts only once principle to aggregate scheduling[C]//2nd International Workshop on Quality of Service in Multiservice IP Networks. Berlin: Springer, 2003: 19-34.
    [23] LENZINI L, MARTORINI L, MINGOZZI E, et al. Tight end-to-end per-flow delay bounds in FIFO multiplexing sink-tree networks[J]. Performance Evaluation, 2006, 63(9-10): 956-987. doi: 10.1016/j.peva.2005.10.003
    [24] BOYER M, FRABOUL C. Tightening end to end delay upper bound for AFDX network calculus with rate latency FIFO servers using network calculus[C]//IEEE International Workshop on Factory Communication Systems. Piscataway: IEEE Press, 2008: 11-20.
    [25] CRUZ R L. A calculus for network delay, Part Ⅰ, Network elements in isolation[J]. IEEE Transactions on Information Theory, 1991, 37(1): 114-131. doi: 10.1109/18.61109
    [26] LE B J, THIRAN P. Network calculus: A theory of deterministic queuing systems for the internet[M]. Berlin: Springer, 2001.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  28
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 录用日期:  2020-10-30
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答