留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进X-best引导个体和动态等级更新机制的鸡群算法

张可为 赵晓林 何利 李宗哲

张可为, 赵晓林, 何利, 等 . 一种改进X-best引导个体和动态等级更新机制的鸡群算法[J]. 北京航空航天大学学报, 2021, 47(12): 2579-2593. doi: 10.13700/j.bh.1001-5965.2020.0322
引用本文: 张可为, 赵晓林, 何利, 等 . 一种改进X-best引导个体和动态等级更新机制的鸡群算法[J]. 北京航空航天大学学报, 2021, 47(12): 2579-2593. doi: 10.13700/j.bh.1001-5965.2020.0322
ZHANG Kewei, ZHAO Xiaolin, HE Li, et al. A chicken swarm optimization algorithm based on improved X-best guided individual and dynamic hierarchy update mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2579-2593. doi: 10.13700/j.bh.1001-5965.2020.0322(in Chinese)
Citation: ZHANG Kewei, ZHAO Xiaolin, HE Li, et al. A chicken swarm optimization algorithm based on improved X-best guided individual and dynamic hierarchy update mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2579-2593. doi: 10.13700/j.bh.1001-5965.2020.0322(in Chinese)

一种改进X-best引导个体和动态等级更新机制的鸡群算法

doi: 10.13700/j.bh.1001-5965.2020.0322
基金项目: 

国家自然科学基金 61503405

详细信息
    通讯作者:

    李宗哲, E-mail: lzz144@163.com

  • 中图分类号: TP301.6

A chicken swarm optimization algorithm based on improved X-best guided individual and dynamic hierarchy update mechanism

Funds: 

National Natural Science Foundation of China 61503405

More Information
  • 摘要:

    在群智能算法的改进中,常利用优秀个体加速算法收敛,但对其依赖过度会导致种群多样性和算法全局收敛性下降的现象。对此,提出一种改进X-best引导个体和动态等级更新机制的鸡群算法。首先,在个体更新阶段不仅引入优秀个体加速收敛,并且通过普通个体对优秀个体的影响进行适当平衡,因此,优秀个体与普通个体的信息都能得到利用,进而种群多样性和算法全局收敛性得到提升。其次,通过对等级更新参数进行动态优化,加强了种群等级更新机制对算法收敛的促进作用。最后,经过时间复杂度与收敛性分析,证明了改进算法仍具有简单性和全局收敛性。仿真结果表明:所提出的改进算法较其他对比算法在寻优精度、寻优成功率和收敛速度等方面都具有明显优势。

     

  • 图 1  标准CSO算法中部分个体的进化曲线

    Figure 1.  Evolution curve of some individuals in standard CSO

    图 2  常见递增方式示意图

    Figure 2.  Schematic diagram of common incremental methods

    图 3  G值对比

    Figure 3.  Comparison of G value

    图 4  算法平衡策略对比

    Figure 4.  Comparison of balance strategy of algorithm

    图 5  个体更新范围对比示意图

    Figure 5.  Schematic diagram of individual update range comparison

    图 6  不同改进机制算法的收敛曲线(D=50)

    Figure 6.  Convergence curves of different improved mechanism algorithms(D=50)

    图 7  D=30时部分测试函数的收敛曲线

    Figure 7.  Convergence curves of some test functions when D=30

    图 8  D=100时部分测试函数的收敛曲线

    Figure 8.  Convergence curves of some test functions when D=100

    表  1  测试函数及参数

    Table  1.   Test functions and parameters

    函数序号 函数名 搜索空间 理论最优值 可接受精度
    f1 Sphere [-100, 100] 0 1×1040
    f2 Schwefel P2.22 [-10, 10] 0 1×1040
    f3 Perm0, d, beta [-10, 10] 0 1×103
    f4 Sum squares [-10, 10] 0 1×1040
    f5 Rastrigin [-5.12, 5.12] 0 1×1020
    f6 Griewank [-600, 600] 0 1×1020
    f7 Ackley [-50, 50] 0 1×1020
    f8 Levy [-10, 10] 0 1×103
    f9 Powell [-5, 5] 0 1×103
    f10 Alpine [-10, 10] 0 1×1040
    f11 Rosenbrock [-10, 10] 0 1×103
    f12 Three-hump Camel [-5, 5] 0 1×1040
    f13 Zakharov [-10, 10] 0 1×1020
    f14 Matyas [-10, 10] 0 1×1040
    f15 Booth [-10, 10] 0 1×1040
    下载: 导出CSV

    表  2  算法参数设置

    Table  2.   Algorithm parameter setting

    算法 参数设置
    ABC[2] Npop=100,Limit=50
    CSO Npop =100,Nr= Nc=0.2 NpopNh=0.6 NpopNm=0.1 NhG=10,0.4≤ F≤1
    HCSO[8] Npop=100,Nr= Nc=0.2 NpopNh=0.6 NpopNm=0.1 NhG=10,0.4≤ F≤1,0≤ r≤0.2
    OBSA-CSO[9] Npop =100,Nr= Nc=0.2 NpopNh=0.6 Npop, Nm=0.1 NhG=10,0.4≤ F≤1,T0=100
    IDCSO Npop=100,Nr= Nc=0.2 NpopNh=0.6 NpopNm=0.1 Nh,0.4≤ F≤1,Gmin=7,Gmax=14
    下载: 导出CSV

    表  3  不同改进机制算法的测试结果

    Table  3.   Test results of different improved mechanism algorithms

    函数 维度 CSO ICSO
    Mean(Std) SR(AVEN)/% Mean(Std) SR(AVEN)/%
    f1 50 5.30×1066(6.73×1067) 100(3 743) 2.36×1075(2.45×1074) 100(3 287)
    f2 50 8.48×1040(6.76×1041) 80(3 451) 9.36×1058(3.64×1058) 100(2 964)
    f3 50 1.44×10(8.69×10) 0(Nan) 1.72×10-4(7.80×10-5) 83(2 894)
    f4 50 7.93×1040(9.98×1039) 37(2971) 6.52×10-46(2.12×10-45) 97(2 645)
    f5 50 0(0) 100(1 878) 0(0) 100(1093)
    f6 50 3.41×10-12(1.99×10-13) 0(Nan) 0(0) 100(2 364)
    f7 50 5.36×10-7(3.92×10-7) 0(Nan) 4.63×10-13(7.82×10-13) 0(Nan)
    f8 50 2.68×10-1(1.99×10-1) 0(Nan) 1.45×10-7(6.31×10-7) 100(2 959)
    f9 50 5.25×10-3(6.22×10-03) 43(3 054) 6.23×10-7(4.62×10-8) 100(2 491)
    f10 50 9.19×10-49(6.73×10-48) 100(3 182) 4.87×10-76(3.26×10-75) 100(2 153)
    f11 50 5.51(2.07×10) 0(Nan) 6.82×10-7(7.83×10-6) 100(2 095)
    f12 50 3.20×10-75(7.46×10-75) 100(1 563) 0(0) 100(893)
    f13 50 9.95×10-5(3.36×10-6) 0(Nan) 8.39×10-39(7.52×10-40) 100(2 122)
    f14 50 2.43×10-81(9.74×10-82) 100(2 943) 0(0) 100(1 406)
    f15 2 0(0) 97(436) 0(0) 100(316)
    函数 维度 DCSO IDCSO
    Mean(Std) SR(AVEN)/% Mean(Std) SR(AVEN)/%
    f1 50 2.97×10-84(8.13×10-83) 100(2 396) 0(0) 100(2 247)
    f2 50 0(0) 100(2 184) 0(0) 100(2 434)
    f3 50 5.14×10-6(5.14×10-6) 100(2431) 1.11×10-9(2.09×10-10) 100(1 963)
    f4 50 8.46×10-51(8.46×10-51) 100(2 349) 7.20×10-61(1.21×10-62) 100(1 743)
    f5 50 0(0) 100(1 298) 0(0) 100(827)
    f6 50 0(0) 100(2 863) 0(0) 100(1 726)
    f7 50 6.22×10-11(6.22×10-11) 0(Nan) 8.88×10-22(3.28×10-23) 96(1 937)
    f8 50 3.63×10-4(3.63×10-4) 87(3 083) 4.83×10-9(1.17×10-10) 100(2 176)
    f9 50 5.74×10-8(5.74×10-8) 100(2 691) 6.08×10-10(2.58×10-10) 100(1 763)
    f10 50 8.86×10-70(8.86×10-70) 100(2 557) 3.33×10-81(1.31×10-82) 100(1 846)
    f11 50 5.76×10-5(5.76×10-5) 93(2 816) 5.26×10-12(1.52×10-12) 100(1 796)
    f12 50 6.24×10-96(6.24×10-96) 100(1 076) 0(0) 100(961)
    f13 50 8.39×10-35(8.39×10-35) 100(2 694) 1.96×10-46(7.83×10-45) 100(1 534)
    f14 50 6.39×10-95(6.39×10-95) 100(2 036) 0(0) 100(1376)
    f15 2 0(0) 100(339) 0(0) 100(223)
    下载: 导出CSV

    表  4  各算法对30维与100维函数的测试结果

    Table  4.   Test results of each algorithm on 30- and 100-dimensional functions

    函数 维数 指标 ABC[2] CSO HCSO OBSA-CSO[9] IDCSO
    f1 30 Mean(Std) 5.61×10-35(6.82×10-36) 5.82×10-86(5.41×10-86) 8.51×10-102(5.61×10-101) 9.30×10-114(6.97×10-115) 0(0)
    SR(AVEN) 100(2 393) 100(2 369) 100(1 988) 100(1 907) 100(1 654)
    100 Mean(Std) 6.61×10-21(5.19×10-22) 5.45×10-55(6.47×10-55) 6.13×10-64(9.90×10-65) 5.28×10-66(4.80×10-67) 8.01×10-95(2.28×10-96)
    SR(AVEN) 37(6 145) 83(7875) 100(5 419) 100(4 409) 100(4 184)
    f2 30 Mean(Std) 1.73×10-40(3.91×10-40) 4.05×10-47(4.48×10-46) 7.39×10-68(5.86×10-67) 2.47×10-74(6.66×10-75) 0(0)
    SR(AVEN) 93(1 802) 100(2 101) 100(2 541) 100(2 121) 100(1 614)
    100 Mean(Std) 2.92×10-22(4.32×10-23) 6.96×10-36(2.94×10-37) 7.69×10-43(5.81×10-43) 9.28×10-48(5.80×10-49) 4.17×10-56(1.21×10-57)
    SR(AVEN) 0(Nan) 87(4 452) 100(4 769) 100(4 216) 100(3 521)
    f3 30 Mean(Std) 3.44×10-2(9.20×10-2) 1.80×10-2(1.52×10-2) 2.18×10-4(6.32×10-5) 5.89×10-4(6.15×10-5) 3.62×10-11(2.50×10-11)
    SR(AVEN) 37(1 745) 73(804) 100(845) 100(1 198) 100(612)
    100 Mean(Std) 3.01×102(7.01×103) 7.36×10(3.95×10) 1.47×10-2(1.89×10-3) 4.43×10-2(6.35×10-2) 2.82×10-5(5.39×10-5)
    SR(AVEN) 0(Nan) 0(Nan) 57(8 065) 63(6 463) 97(4 433)
    f4 30 Mean(Std) 4.33×10-42(5.61×10-41) 8.22×10-55(4.30×10-56) 1.24×10-72(4.92×10-73) 8.53×10-75(8.74×10-76) 0(0)
    SR(AVEN) 93(2 741) 100(2 415) 100(1 984) 100(1 556) 100(1 435)
    100 Mean(Std) 6.45×10-23(3.76×10-24) 7.91×10-31(9.49×10-32) 9.48×10-33(2.82×10-34) 1.06×10-35(1.42×10-36) 1.66×10-42(6.21×10-42)
    SR(AVEN) 0(Nan) 0(Nan) 0(Nan) 27(4 568) 87(3 956)
    f5 30 Mean(Std) 0(0) 0(0) 0(0) 0(0) 0(0)
    SR(AVEN) 100(803) 100(754) 100(667) 100(541) 100(469)
    100 Mean(Std) 9.06×10-5(8.82×10-6) 5.34×10-6(1.90×10-7) 3.41×10-12(4.31×10-13) 2.27×10-13(3.01×10-13) 0(0)
    SR(AVEN) 0(Nan) 0(Nan) 0(Nan) 0(Nan) 100(3 649)
    f6 30 Mean(Std) 0(0) 0(0) 0(0) 0(0) 0(0)
    SR(AVEN) 100(1 734) 100(1 487) 100(973) 100(1 246) 100(698)
    100 Mean(Std) 1.49×10-6(9.01×10-6) 1.32×10-10(5.42×10-11) 0(0) 0(0) 0(0)
    SR(AVEN) 0(Nan) 0(Nan) 100(5 096) 100(3 845) 100(2 596)
    f7 30 Mean(Std) 6.61×10-16(7.30×10-17) 1.78×10-23(3.61×10-23) 4.44×10-28(5.22×10-29) 4.44×10-34(5.22×10-35) 2.09×10-41(9.05×10-41)
    SR(AVEN) 17(1 731) 87(1 951) 100(1 865) 100(1 465) 100(1 094)
    100 Mean(Std) 8.63×10-10(4.84×10-10) 9.12×10-17(1.04×10-18) 7.46×10-20(7.36×10-21) 5.62×10-25(1.84×10-25) 5.97×10-32(3.06×10-33)
    SR(AVEN) 0(Nan) 20(4 696) 67(4 367) 93(4 117) 100(3 714)
    f8 30 Mean(Std) 7.87×10-1(1.93×10-2) 1.94×10-2(4.71×10-2) 2.95×10-4(7.54×10-5) 4.11×10-6(3.13×10-7) 2.40×10-11(1.97×10-12)
    SR(AVEN) 0(Nan) 37(696) 83(724) 100(678) 100(684)
    100 Mean(Std) 6.95×102(4.99×103) 4.56×10(1.02×10) 9.95×10-2(3.32×10-2) 2.97×10-3(4.62×10-3) 2.98×10-5(4.46×10-6)
    SR(AVEN) 0(Nan) 0(Nan) 43(6 741) 77(5 863) 97(4 213)
    f9 30 Mean(Std) 2.32×10-2(6.47×10-1) 6.63×10-4(1.92×10-3) 2.03×10-7(7.77×10-8) 6.22×10-9(5.34×10-9) 5.31×10-20(8.26×10-21)
    SR(AVEN) 33(2 134) 83(1 164) 100(1 042) 100(894) 100(864)
    100 Mean(Std) 5.74(4.52) 7.46×10-1(4.12×10-2) 3.48×10-3(6.68×10-4) 6.03×10-5(5.26×10-6) 7.34×10-8(7.07×10-7)
    SR(AVEN) 0(Nan) 0(Nan) 53(3 914) 97(3 854) 100(3 421)
    f10 30 Mean(Std) 7.86×10-42(5.13×10-43) 6.93×10-58(5.57×10-57) 3.97×10-71(5.62×10-72) 7.87×10-79(3.38×10-80) 6.08×10-94(7.41×10-95)
    SR(AVEN) 90(1 731) 100(1 826) 100(2 145) 100(1 945) 100(1 696)
    100 Mean(Std) 4.67×10-23(6.48×10-22) 5.54×10-31(4.85×10-32) 8.94×10-36(7.99×10-37) 7.34×10-38(2.51×10-39) 4.73×10-51(2.89×10-52)
    SR(AVEN) 0(Nan) 0(Nan) 17(5 078) 63(4 974) 100(3 974)
    f11 30 Mean(Std) 3.62(9.06) 5.03×10-1(9.13×10-2) 9.78×10-2(1.98×10-2) 2.14×10-3(5.47×10-3) 4.45×10-19(9.65×10-19)
    SR(AVEN) 0(Nan) 0(Nan) 50(1 379) 83(2 345) 100(943)
    100 Mean(Std) 1.58×103(9.71×102) 9.57×102(4.85×102) 8.25(1.42) 4.22×10-2(9.16×10-1) 7.92×10-8(9.59×10-8)
    SR(AVEN) 0(Nan) 0(Nan) 0(Nan) 43(5 274) 100(4 173)
    f12 30 Mean(Std) 6.56×10-84(3.36×10-84) 8.49×10-92(9.34×10-93) 8.89×10-101(1.54×10-102) 1.26×10-105(2.36×10-105) 0(0)
    SR(AVEN) 100(946) 100(894) 100(793) 100(641) 100(593)
    100 Mean(Std) 7.06×10-42(2.32×10-43) 2.77×10-52(1.46×10-52) 2.97×10-72(8.23×10-73) 6.95×10-81(3.17×10-81) 9.59×10-96(2.34×10-97)
    SR(AVEN) 87(3 641) 100(3 096) 100(2 784) 100(2 263) 100(1 643)
    f13 30 Mean(Std) 1.03×10-4(3.82×10-4) 7.66×10-6(7.95×10-7) 1.87×10-36(4.92×10-36) 4.46×10-42(6.49×10-41) 7.09×10-60(7.55×10-61)
    SR(AVEN) 0(Nan) 0(Nan) 100(2 374) 100(1 578) 100(1 076)
    100 Mean(Std) 1.04×10-2(6.82×10-1) 1.03×10-4(1.63×10-5) 2.52×10-7(4.98×10-8) 1.32×10-9(3.43×10-9) 1.06×10-21(2.24×10-22)
    SR(AVEN) 0(Nan) 0(Nan) 0(Nan) 0(Nan) 80(4 566)
    f14 30 Mean(Std) 7.51×10-85(2.55×10-85) 5.06×10-96(6.99×10-97) 4.36×10-105(6.12×10-106) 1.94×10-108(8.25×10-109) 0(0)
    SR(AVEN) 100(1 294) 100(984) 100(841) 100(793) 100(624)
    100 Mean(Std) 8.41×10-51(2.54×10-52) 8.14×10-64(2.44×10-65) 9.29×10-75(3.53×10-75) 1.97×10-79(2.51×10-80) 6.16×10-93(4.73×10-93)
    SR(AVEN) 100(4 836) 100(4 214) 100(3 935) 100(3 647) 100(3 056)
    f15 2 Mean(Std) 0(0) 0(0) 0(0) 0(0) 0(0)
    SR(AVEN) 100(475) 100(436) 100(397) 100(364) 100(223)
    下载: 导出CSV

    表  5  IDCSO算法与其他改进CSO算法的比较结果

    Table  5.   Comparison results between IDCSO and other improved chicken swarm algorithms

    函数 指标 T=1 000, D=30 T=200, D=30 T=1 000, D=100
    EOCSO[25] IDCSO PRCSO[10] IDCSO DMCSO[26] GCSO[27] IDCSO
    f1 Mean 0 0 1.930×10-11 2.632×10-32 5.863×10-4 3.440×10-22 2.739×10-84
    Std 0 0 7.556×10-22 5.486×10-33 2.093×10-3 1.490×10-22 3.002×10-90
    f2 Mean 2.130×10-112 0
    Std 2.868×10-112 0
    f5 Mean 0 0 1.144×10-8 0 6.663×10-7 2.750×10-15 0
    Std 0 0 3.584×10-16 0 2.008×10-6 5.040×10-15 0
    f6 Mean 0 0 2.573×10-11 0 1.516×10-5 2.780×10-17 0
    Std 0 0 9.663×10-22 0 3.803×10-5 6.160×10-17 0
    f7 Mean 4.705×10-15 8.881×10-16 5.007×10-7 1.146×10-13 9.541×10-3 9.080×10-24 8.881×10-16
    Std 7.999×10-16 1.610×10-16 2.919×10-14 4.165×10-15 2.248×10-2 2.440×10-24 1.61×10-16
    f9 Mean 1.152×10-2 3.101×10-8
    Std 1.962×10-2 3.458×10-8
    f10 Mean 9.238×10-3 4.812×10-56
    Std 1.949×10-2 2.599×10-57
    f11 Mean 1.610×10-4 9.521×10-20 1.521×10-8 4.327×10-9
    Std 3.590×10-4 1.010×10-20 2.464×10-21 3.578×10-10
    f13 Mean 1.212×102 4.059×10-20
    Std 1.147×102 1.135×10-22
    下载: 导出CSV
  • [1] MENG X B, LIU Y, GAO X Z, et al. A new bio-inspired algorithm: Chicken swarm optimization[C]//International Conference in Swarm Intelligence. Berlin: Springer, 2014: 86-94.
    [2] YANG X S, KARAMANOGLU M. Swarm intelligence and bio-inspired computation[M]. Amsterdam: Elsevier, 2013: 3-23.
    [3] DEB S, GAO X Z, TAMMI K, et al. Recent studies on chicken swarm optimization algorithm: A review (2014-2018)[J]. Artificial Intelligence Review, 2020, 53(3): 1737-1765. doi: 10.1007/s10462-019-09718-3
    [4] CHEN Y L, HE P L, ZHANG Y H. Combining penalty function with modified chicken swarm optimization for constrained optimization[C]//Proceedings of the First International Conference on Information Sciences, Machinery, Materials and Energy. Paris: Atlantis Press, 2015: 1899-1907.
    [5] WANG K, LI Z B, CHENG H, et al. Mutation chicken swarm optimization based on nonlinear inertia weight[C]//2017 3rd IEEE International Conference on Computer and Communications (ICCC). Piscataway: IEEE Press, 2017: 2206-2211.
    [6] IRSALINDA N, THOBIRIN A, WIJAYANTI D E. Chicken swarm as a multi step algorithm for global optimization[J]. International Journal of Engineering Science Invention, 2017, 6(1): 8-14. http://ijesi.org/papers/Vol(6)1/B06010814.pdf
    [7] WU D H, KONG F, GAO W Z, et al. Improved chicken swarm optimization[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Piscataway: IEEE Press, 2015: 681-686.
    [8] 黄霞, 叶春明, 郑军. 混合改进搜索策略的鸡群优化算法[J]. 计算机工程与应用, 2018, 54(7): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201807028.htm

    HUANG X, YE C M, ZHENG J. Chicken swarm optimization algorithm of hybrid evolutionary searching strategy[J]. Computer Engineering and Applications, 2018, 54(7): 176-181(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201807028.htm
    [9] 杨菊蜻, 张达敏, 张慕雪, 等. 一种混合改进的鸡群优化算法[J]. 计算机应用研究, 2018, 35(11): 3290-3293. doi: 10.3969/j.issn.1001-3695.2018.11.021

    YANG J Q, ZHANG D M, ZHANG M X, et al. Hybrid improved for chicken swarm optimization algorithm[J]. Application Research of Computers, 2018, 35(11): 3290-3293(in Chinese). doi: 10.3969/j.issn.1001-3695.2018.11.021
    [10] 张慕雪, 张达敏, 杨菊蜻, 等. 一种基于正向学习和反向学习的改进鸡群算法[J]. 微电子学与计算机, 2018, 35(6): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201806005.htm

    ZHANG M X, ZHANG D M, YANG J Q, et al. An improved chicken algorithm based on positive learning and reverse learning[J]. Microelectronics & Computer, 2018, 35(6): 22-27(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201806005.htm
    [11] AHMED K, HASSANIEN A E, BHATTACHARYYA S. A novel chaotic chicken swarm optimization algorithm for feature selection[C]//2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). Piscataway: IEEE Press, 2017: 259-264.
    [12] 李宾, 申国君, 孙庚, 等. 改进的鸡群优化算法[J]. 吉林大学学报(工学版), 2019, 49(4): 1339-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201904038.htm

    LI B, SHEN G J, SUN G, et al. Improved chicken swarm optimization algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1339-1344(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201904038.htm
    [13] SHUANG L, TIE F, SUN G, et al. Transmission power optimization for reducing sidelobe via bat-chicken swarm optimization in distributed collaborative beamforming[C]//2016 2nd IEEE International Conference on Computer and Communications (ICCC). Piscataway: IEEE Press, 2016: 2164-2168.
    [14] LIANG S, FENG T, SUN G. Sidelobe-level suppression for linear and circular antenna arrays via the cuckoo search-chicken swarm optimization algorithm[J]. IET Microwaves, Antennas & Propagation, 2017, 11(2): 209-218. http://www.onacademic.com/detail/journal_1000039635543110_2c12.html
    [15] KUMAR D S, VENI S. Enhanced energy steady clustering using convergence node based path optimization with hybrid chicken swarm algorithm in MANET [J]. International Journal of Pure and Applied Mathematics, 2017, 118: 767-788. http://www.researchgate.net/publication/327366158_Enhanced_Energy_Steady_Clustering_Using_Convergence_Node_Based_Path_Optimization_with_Hybrid_Chicken_Swarm_Algorithm_in_MANET
    [16] LI Y H, ZHAN Z H, LIN S J, et al. Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems[J]. Information Sciences, 2015, 293: 370-382. doi: 10.1016/j.ins.2014.09.030
    [17] MILLONAS M M. Swarms, phase transitions, and collective intelligence[J]. Computational Intelligence: A Dynamic System Perspective, 1994, 101(8): 137-151. http://arxiv.org/pdf/adap-org/9306002
    [18] 杜振鑫, 刘广钟, 韩德志, 等. 基于全局无偏搜索策略的精英人工蜂群算法[J]. 电子学报, 2018, 46(2): 308-314. doi: 10.3969/j.issn.0372-2112.2018.02.008

    DU Z X, LIU G Z, HAN D Z, et al. Artificial bee colony algorithm with global and unbiased search strategy[J]. Acta Electronica Sinica, 2018, 46(2): 308-314(in Chinese). doi: 10.3969/j.issn.0372-2112.2018.02.008
    [19] WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. doi: 10.1109/4235.585893
    [20] 任子晖, 王坚, 高岳林. 马尔科夫链的粒子群优化算法全局收敛性分析[J]. 控制理论与应用, 2011, 28(4): 462-466. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201104004.htm

    REN Z H, WANG J, GAO Y L. The global convergence analysis of particle swarm optimization algorithm based on Markov chain[J]. Control Theory & Applications, 2011, 28(4): 462-466(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201104004.htm
    [21] 宁爱平, 张雪英. 人工蜂群算法的收敛性分析[J]. 控制与决策, 2013, 28(10): 1554-1558. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201310021.htm

    NING A P, ZHANG X Y. Convergence analysis of artificial bee colony algorithm[J]. Control and Decision, 2013, 28(10): 1554-1558(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201310021.htm
    [22] SOLIS F J, WETS R J B. Minimization by random search techniques[J]. Mathematics of Operations Research, 1981, 6(1): 19-30. doi: 10.1287/moor.6.1.19
    [23] 吴定会, 孔飞, 纪志成. 鸡群算法的收敛性分析[J]. 中南大学学报(自然科学版), 2017, 48(8): 2105-2112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201708019.htm

    WU D H, KONG F, JI Z C. Convergence analysis of chicken swarm optimization algorithm[J]. Journal of Central South University (Science and Technology), 2017, 48(8): 2105-2112(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201708019.htm
    [24] 张文修, 梁怡. 遗传算法的数学基础[M]. 西安: 西安交通大学出版社, 2003: 67-87.

    ZHANG W X, LIANG Y. Mathematical foundation of genetic algorithm[M]. Xi'an: Xi'an Jiaotong University Press, 2003: 67-87(in Chinese).
    [25] QU C W, ZHAO S A, FU Y M, et al. Chicken swarm optimization based on elite opposition-based learning[J]. Mathematical Problems in Engineering, 2017, 2017: 1-20. http://smartsearch.nstl.gov.cn/paper_detail.html?id=112c2ceb379ee2d66c48cee6b3470ca1
    [26] 韩萌. 耗散结构和差分变异混合的鸡群算法[J]. 浙江大学学报(理学版), 2018, 45(3): 272-283. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX201803002.htm

    HAN M. Hybrid chicken swarm algorithm with dissipative structure and differential mutation[J]. Journal of Zhejiang University (Science Edition), 2018, 45(3): 272-283(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX201803002.htm
    [27] 杨小健, 徐小婷, 李荣雨. 求解高维优化问题的遗传鸡群优化算法[J]. 计算机工程与应用, 2018, 54(11): 133-139. doi: 10.3778/j.issn.1002-8331.1701-0237

    YANG X J, XU X T, LI R Y. Genetic chicken swarm optimization algorithm for solving high-dimensional optimization problems[J]. Computer Engineering and Applications, 2018, 54(11): 133-139(in Chinese). doi: 10.3778/j.issn.1002-8331.1701-0237
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  28
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 录用日期:  2021-07-01
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答