留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性翼气动力和变形特性的实验研究

王涵斌 贺曦 王晋军

王涵斌, 贺曦, 王晋军等 . 柔性翼气动力和变形特性的实验研究[J]. 北京航空航天大学学报, 2022, 48(4): 665-673. doi: 10.13700/j.bh.1001-5965.2020.0617
引用本文: 王涵斌, 贺曦, 王晋军等 . 柔性翼气动力和变形特性的实验研究[J]. 北京航空航天大学学报, 2022, 48(4): 665-673. doi: 10.13700/j.bh.1001-5965.2020.0617
WANG Hanbin, HE Xi, WANG Jinjunet al. Experimental study on aerodynamic and deformation characteristics of flexible membrane wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 665-673. doi: 10.13700/j.bh.1001-5965.2020.0617(in Chinese)
Citation: WANG Hanbin, HE Xi, WANG Jinjunet al. Experimental study on aerodynamic and deformation characteristics of flexible membrane wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 665-673. doi: 10.13700/j.bh.1001-5965.2020.0617(in Chinese)

柔性翼气动力和变形特性的实验研究

doi: 10.13700/j.bh.1001-5965.2020.0617
基金项目: 

国家自然科学基金国际合作项目 11761131009

创新研究群体项目 11721202

详细信息
    通讯作者:

    王晋军, E-mail: jjwang@buaa.edu.cn

  • 中图分类号: V211.41

Experimental study on aerodynamic and deformation characteristics of flexible membrane wing

Funds: 

NSFC Projects of International Cooperation and Exchanges 11761131009

Science Fund for Creative Research Groups 11721202

More Information
  • 摘要:

    微型飞行器在军、民用领域具有广阔的应用前景,柔性翼是提升微型飞行器的气动性能的有效方法。为了更好地对柔性翼进行控制,对柔性翼变形和振动特性及其对气动力的影响进行了同步测量。研究结果表明,相比于刚性翼,柔性翼使失速迎角推迟了6°,最大升力系数提升了47.4%,升阻比提高了17.8%。柔性翼的周期性振动除了迎角0°~2°呈现大振幅、小静变形特征外,振动的振幅随着迎角增加经历无明显波峰、三波峰到单波峰的转换。升力系数最大时对应的薄膜变形、振动振幅均达到最大。此外,变形最大的弦向位置随迎角的变化决定了俯仰力矩的特性。据此提出了施加弯度和特定频率的振动激励来提升气动性能的主动控制策略。

     

  • 图 1  柔性翼示意图

    Figure 1.  Schematic diagram of flexible membrane wing

    图 2  柔性翼细节与坐标系示意图

    Figure 2.  Details of flexible membrane wing and schematic diagram of coordinate system

    图 3  实验装置布置

    Figure 3.  Experimental device arrangement

    图 4  柔性翼识别

    Figure 4.  Recognition of flexible membrane wing

    图 5  柔性翼气动力特性

    Figure 5.  Aerodynamic characteristics of flexible membrane wing

    图 6  气动力频域特性

    Figure 6.  Frequency-domain characteristics of aerodynamic forces

    图 7  St数随迎角变化关系

    Figure 7.  Variation of St with angle of attack

    图 8  气动力PSDmax随迎角变化关系

    Figure 8.  Variation of PSDmax of aerodynamic forces with angle of attack

    图 9  柔性翼最大变形

    Figure 9.  Maximum deformation of flexible membrane wing

    图 10  柔性翼最大变形的弦向位置

    Figure 10.  Chordwise position of maximum deformation of flexible membrane wing

    图 11  柔性翼振动幅值沿弦向分布规律

    Figure 11.  Vibration amplitude chordwise distribution law of flexible membrane wing

    图 12  柔性翼相位平均后变形脉动值和频率特性

    Figure 12.  Phase-averaged deformation fluctuations and frequency characteristics of flexible membrane wing

    图 13  α=20°时升力与振动频率特性

    Figure 13.  Frequency characteristics of lift and vibration at α=20°

    图 14  α=26°时升力与振动频率特性

    Figure 14.  Frequency characteristics of lift and vibration at α=26°

    图 15  振幅与升力PSDmax比较

    Figure 15.  Comparison between vibration amplitude and PSDmax of flexible wembrane wing

  • [1] SHYY W, IFJU P, VⅡERU D. Membrane wing-based micro air vehicles[J]. Applied Mechanics Reviews, 2005, 58(4): 283-301. doi: 10.1115/1.1946067
    [2] LISSAMAN P B S. Low-Reynolds-number airfoils[J]. Annual Review of Fluid Mechanics, 2003, 15(1): 223-239.
    [3] SWARTZ S M, IRIARTE-DIAZ J, RISKIN D K, et al. A bird A plane No, it's a bat: An introduction to the biomechanics of bat flight[M]. Cambridge: Cambridge University Press, 2012: 317-351.
    [4] SWARTZ S M. Allometric patterning in the limb skeleton of bats: Implications for the mechanics and energies of powered flight[J]. Journal of Morphology, 1997, 234(3): 277-294. doi: 10.1002/(SICI)1097-4687(199712)234:3<277::AID-JMOR6>3.0.CO;2-6
    [5] SWARTZ S M, BENNETT M B, CARRIER D R. Wing bone stresses in free flying bats and the evolution of skeletal design for flight[J]. Nature, 1992, 359(6397): 726-729. doi: 10.1038/359726a0
    [6] TIAN X D, IRIARTE J, MIDDLETON K, et al. Direct measurements of the kinematics and dynamics of bat flight[C]//36th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2006, 1: 10-18.
    [7] WANG S Z, ZHANG X, HE G W, et al. Lift enhancement by bats' dynamically changing wingspan[J]. Journal of the Royal Society Interface, 2015, 12(113): 2-11.
    [8] SHYY W, JENKINS D, SMITH R. Study of adaptive shape airfoils at low reynolds number in oscillatory flows[J]. AIAA Journal, 1997, 35(9): 1545-1548. doi: 10.2514/2.7484
    [9] LEVIN O, SHYY W. Optimization of a low reynolds number airfoil with flexible membrane[J]. Computer Modeling in Engineering and Sciences, 2001, 2(4): 523-536.
    [10] BÉGUIN B, BREITSAMTER C, ADAMS N. Experimental investigations of an elasto-flexible morphing wing concept[C]//27th Congress of the International Council of the Aeronautical Sciences, 2010, 9: 1-11.
    [11] BÉGUIN B, BREITSAMTER C, ADAMS N. Aerodynamic investigations of a morphing membrane wing[J]. AIAA Journal, 2012, 50(11): 2588-2599. doi: 10.2514/1.J051772
    [12] HE X, GUO Q F, WANG J J. Extended flexible trailing-edge on the flow structures of an airfoil at high angle of attack[J]. Experiments in Fluids, 2019, 60(8): 122-143. doi: 10.1007/s00348-019-2767-5
    [13] GUO Q F, HE X, WANG Z, et al. Effects of flexible wing on the aerodynamic performance of an aircraft model[J]. Chinese Journal of Aeronautics, 2021, 34(9): 133-142. doi: 10.1016/j.cja.2021.01.012
    [14] ROJRATSIRIKUL P, WANG Z, GURSUL I. Effect of pre-strain and excess length on unsteady fluid-structure interactions of membrane airfoils[J]. Journal of Fluids and Structures, 2010, 26(3): 359-376. doi: 10.1016/j.jfluidstructs.2010.01.005
    [15] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 9(1): 62-66.
    [16] GORDNIER R. High fidelity computational simulation of a membrane wing airfoil[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting And Exhibit. Reston: AIAA, 2008, 1: 7-10.
    [17] MATLIS E H, HE C, CORKE T C, et al. Sensing and control of flow separation using plasma actuators[J]. Philosophical Transactions of the Royal Society: Mathematical, Physical, and Engineering Sciences, 2011, 369(1940): 1459-1475. doi: 10.1098/rsta.2010.0356
    [18] ROJRATSIRIKUL P, WANG Z, GURSUL I. Unsteady fluid-structure interactions of membrane airfoils at low reynolds numbers[J]. Experiments in Fluids, 2009, 46(5): 859. doi: 10.1007/s00348-009-0623-8
    [19] NEWMAN B G, LOW H T. Two-dimensional impervious sails: Experimental results compared with theory[J]. Journl of Fluid Mechanics, 1984, 144: 445-462. doi: 10.1017/S0022112084001683
    [20] HE X, WANG J J. Fluid-structure interaction of a flexible membrane wing at a fixed angle of attack[J]. Physics of Fluids, 2020, 32(12): 127102. doi: 10.1063/5.0029378
    [21] 叶正寅, 张伟伟, 史爱明. 流固耦合力学基础及其应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2010: 86-109.

    YE Z Y, ZHANG W W, SHI A M. Fundamentals of fluid-solid coupling mechanics and its application[M]. Harbin: Harbin Institute of Technology Press, 2010: 86-109(in Chinese).
  • 加载中
图(15)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  121
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 录用日期:  2020-12-25
  • 网络出版日期:  2022-04-20

目录

    /

    返回文章
    返回
    常见问答