留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

底凹结构减阻效应数值分析

李彪 王良明 杨志伟

李彪, 王良明, 杨志伟等 . 底凹结构减阻效应数值分析[J]. 北京航空航天大学学报, 2022, 48(4): 682-690. doi: 10.13700/j.bh.1001-5965.2020.0623
引用本文: 李彪, 王良明, 杨志伟等 . 底凹结构减阻效应数值分析[J]. 北京航空航天大学学报, 2022, 48(4): 682-690. doi: 10.13700/j.bh.1001-5965.2020.0623
LI Biao, WANG Liangming, YANG Zhiweiet al. Numerical analysis on drag reduction effect of base cavity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 682-690. doi: 10.13700/j.bh.1001-5965.2020.0623(in Chinese)
Citation: LI Biao, WANG Liangming, YANG Zhiweiet al. Numerical analysis on drag reduction effect of base cavity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 682-690. doi: 10.13700/j.bh.1001-5965.2020.0623(in Chinese)

底凹结构减阻效应数值分析

doi: 10.13700/j.bh.1001-5965.2020.0623
详细信息
    通讯作者:

    王良明, E-mail: lmwang802@163.com

  • 中图分类号: TJ41;V211.3

Numerical analysis on drag reduction effect of base cavity

More Information
  • 摘要:

    为研究弹丸底凹结构的减阻机理,使用三维定常CFD方法对M910弹丸的流场特性进行了数值模拟。给出了零升阻力系数随马赫数的变化规律,所得结果与实验数据符合很好。在此基础上,为M910弹丸引入底凹结构并进行数值模拟。对比了不同弹底结构的底部流场特性,对底凹结构减阻效应的产生机理进行了分析。结果表明:亚声速下,底凹结构在底凹腔体内引入了高压“死水区”,并以“屈从”的流体边界代替了原固体底面,从而改变了尾部涡街的形成位置、形状和强度,最终增大底部压力,减小弹丸阻力;跨声速下,由于尾部涡街远离弹丸底面,固体底面与流体边界面的作用相同,使得底凹不再具有减阻效果;超声速下,底凹结构的减阻机理与底排弹丸减阻机理类似,即底凹结构中的流体为弹丸底部回流区添加质量从而达到减阻作用。

     

  • 图 1  计算模型

    Figure 1.  Computational model

    图 2  底凹计算网格

    Figure 2.  Computational mesh of base cavity

    图 3  计算阻力系数与实验数据的对比

    Figure 3.  Comparison between calculated drag coefficient and experimental data

    图 4  底凹结构的减阻效率

    Figure 4.  Drag reduction efficiency of base cavity structure

    图 5  弹底中心线压力系数曲线

    Figure 5.  Centerline pressure coefficient curves of projectile base

    图 6  弹底横截面平均压力系数曲线

    Figure 6.  Cross-sectional average pressure coefficient curves of projectile base

    图 7  亚声速下弹底压力对比

    Figure 7.  Comparison of projectile base pressure at subsonic speed

    图 8  跨声速下弹底压力对比

    Figure 8.  Comparison of projectile base pressure at transonic speed

    图 9  超声速下弹底压力对比

    Figure 9.  Comparison of projectile base pressure at supersonic speed

    表  1  网格无关性验证

    Table  1.   Grid independence verification

    弹型 规格 网格数 阻力系数CD 计算时间/h
    M910 1 247 191 0.209 3 5
    1 974 720 0.227 4 7.9
    3 117 979 0.227 6 12.5
    M910BC 1 281 160 0.203 5 5
    2 028 504 0.218 1 8
    3 202 901 0.218 8 12.6
    下载: 导出CSV

    表  2  计算网格特性

    Table  2.   Computational mesh characteristics

    弹型 计算值 最优网格数目
    径向边界距离 前向边界距离 后向边界距离 第一层网格厚度
    M910 45.8 24.7 39.8 4×10-5 1 974 720
    M910BC 45.8 24.7 39.8 4×10-5 2 028 504
    下载: 导出CSV

    表  3  来流条件与马赫数的关系

    Table  3.   Relationship between incoming flow conditions and Mach number

    范围 马赫数 来流速度/(m·s-1)
    亚声速 0.60 204.1
    0.70 238.1
    跨声速 0.90 306.2
    0.98 333.4
    1.02 347.0
    1.20 408.3
    超声速 2.00 680.4
    2.50 850.5
    3.00 1 021.1
    3.50 1 190.7
    下载: 导出CSV

    表  4  亚声速下涡街中心信息

    Table  4.   Information of vortex street center at subsonic speed

    弹型 马赫数 涡街中心坐标 涡街中心压力/Pa
    x/mm y/mm
    M910 0.6 80.042 7 5.390 8 94 511
    0.7 80.181 0 5.344 7 92 193
    M910BC 0.6 80.319 3 5.166 1 95 751
    0.7 80.457 6 5.212 2 93 620
    下载: 导出CSV

    表  5  跨声速下涡街中心信息

    Table  5.   Information of vortex street center at transonic speed

    弹型 马赫数 涡街中心坐标 涡街中心压力/Pa
    x/mm y/mm
    M910 0.90 80.642 0 5.483 0 86 368
    0.98 80.872 5 5.252 5 79 307
    1.02 80.411 5 5.160 3 74 054
    1.20 80.181 0 4.975 9 68 160
    M910BC 0.90 80.872 5 5.304 3 87 852
    0.98 81.149 1 5.258 2 80 355
    1.02 80.780 3 5.073 8 75 926
    1.20 80.549 8 4.843 3 70 422
    下载: 导出CSV
  • [1] 臧国才, 李树常. 弹箭空气动力学[M]. 北京: 兵器工业出版社, 1989: 142-144.

    ZANG G C, LI S C. Aerodynamics of projectiles and missiles[M]. Beijing: Publishing House of Ordnance Industry, 1989: 142-144(in Chinese).
    [2] TANNER M. Base cavity at angles of incidence[J]. AIAA Journal, 1988, 26(3): 376-377. doi: 10.2514/3.9903
    [3] SAHU J. A computational study of the base region flow field for the M865 projectile: ARL-TR-109[R]. Reston: AIAA, 1993.
    [4] SAHU J, NIRTUBICZ C J. Three dimensional flow calculations for a projectile with standard and dome bases: BRL-TR-3150[R]. Reston: AIAA, 1990.
    [5] SAHU J, NIETUBICZ C J, HEAVEY K R. Computational study of the M825 projectile with standard and dome base: BRL-MR-3662[R]. Reston: AIAA, 1986.
    [6] HERRIN J L, DUTTON J C. Supersonic base flow experiments in the near-wake of a cylindrical afterbody[J] AIAA Jornal, 1994, 32(1): 77-83. doi: 10.2514/3.11953
    [7] KRUISWYK R W, DUTTON J C. Effects of a base cavity on subsonic near-wake flow[J]. AIAA Journal, 1990, 28(11): 1885-1893. doi: 10.2514/3.10495
    [8] KRUISWYK R W, DUTTON J C. An experimental investigation of the effects of base cavity on the near-wake flowfield of a body at subsonic and transonic speeds[C]//Proceedings of 27th Aerospace Sciences Meeting. Reston: AIAA, 1989: 210.
    [9] MOLEZZI M J, DUTTON J C. Study of subsonic base cavity flowfield structure using particle image velocimetry[J]. AIAA Journal, 1995, 33(2): 201-209. doi: 10.2514/3.12390
    [10] FOURNIER E Y, DUPUIS A D, EDWARDS J A. Base cavity effects on the aerodynamic characteristics of a hypersonic flared projectile[J]. Journal of Spacecraft and Rockets, 1997, 34(6): 737-743. doi: 10.2514/2.3304
    [11] FOURNIER E Y, DUPUIS A D. Computational fluid dynamic analysis of the base cavity interactions of the CAN-4 research projectile: DREV-TM-9620[R]. Quebec: Defense R & D, 1997.
    [12] SIMON F, DECK S, GUILLEN P, et al. Zonal-detached-eddy simulation of projectiles in the subsonic and transonic regimes[J]. AIAA Journal, 2007, 45(7): 1606-1619. doi: 10.2514/1.26827
    [13] SIMON F, DECK S, GUILLEN P. Reynolds-averaged Navier-Stokes/large-eddy simulations of supersonic base flow[J]. AIAA Journal, 2006, 44(11): 2578-2590. doi: 10.2514/1.21366
    [14] 谷嘉锦. 底凹弹丸的风洞实验研究[J]. 南京航空航天大学学报, 1979, 12(1): 243-253. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK197901016.htm

    GU J J. The study of wind tunnel experiments of a ball with hollow base[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1979, 12(1): 243-253(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK197901016.htm
    [15] 浦发, 王中原. 超音速底凹弹减阻机理的研究[J]. 弹道学报, 1989, 9(1): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB198901010.htm

    PU F, WANG Z Y. The analysis of drag reduction in supersonic speed for projectiles with base cavity[J]. Journal of Ballisitics, 1989, 9(1): 63-67(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB198901010.htm
    [16] 王中原. 超声速底凹弹侧壁开孔对飞行阻力的影响[J]. 空气动力学学报, 1997, 15(4): 502-506. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX199704012.htm

    WANG Z Y. The effect about projectiles of base cavity with side holes to flight drag under supersonic flow[J]. Acta Aerodynamic Sinca, 1997, 15(4): 502-506(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX199704012.htm
    [17] 王中原. 底凹弹侧壁斜孔减小底阻分析[J]. 南京理工大学学报, 1997, 21(1): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG701.004.htm

    WANG Z Y. Analysis of base drag reduced by side holes in the projectile with base cavity[J]. Journal of Nanjing University of Science and Technology, 1997, 21(1): 21-24(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG701.004.htm
    [18] PAN S C, CAI J S. Investigation of vortical flow over bluff bodies with base cavities[J]. Acta Mechanica Sinica, 2012, 28(5): 1238-1247. doi: 10.1007/s10409-012-0143-2
    [19] 轩海彬, 张文洁, 于勇, 等. 亚跨声速流动中底凹减阻的数值模拟[J]. 兵器装备工程学报, 2017, 38(11): 1-8. doi: 10.11809/scbgxb2017.11.001

    XUAN H B, ZHANG W J, YU Y, et al. Numerical study on drag reduction of projectile in subsonic and transonic speed[J]. Journal of Ordnance Equipment Engineering, 2017, 38(11): 1-8(in Chinese). doi: 10.11809/scbgxb2017.11.001
    [20] 陆海波, 颛孙世周, 孙凤文, 等. 不同形状底凹结构对火炮弹丸飞行阻力影响研究[J]. 弹箭与制导学报, 2016, 36(5): 112-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201605031.htm

    LU H B, ZHUANSUN S Z, SUN F W, et al. Research on influence of base cavity with different shape on aerodynamic drag of projectile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(5): 112-114(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201605031.htm
    [21] 陆海波, 高洁. 侧倾底凹结构对火炮弹丸阻力的影响[J]. 兵器装备工程学报, 2019, 40(6): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201906002.htm

    LU H B, GAO J. Research on shrinkage shape of base cavity upon aerodynamic drag of projectile[J]. Journal of Ordnance Equipment Engineering, 2019, 40(6): 5-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201906002.htm
    [22] DESPIRITO J, HEAVEY K. CFD computation of magnus moment and roll-damping moment of a spinning projectile[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2004: 1-24.
    [23] 于勇. Fluent入门与进阶教程[M]. 北京: 北京理工大学出版社, 2008: 23-25.

    YU Y. Fluent introductory and advanced tutorials[M]. Beijing: Beijing Institute of Technology Press, 2008: 23-25(in Chinese).
    [24] LAUNDER B E, SHARMA B I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc[J]. Letter in Heat and Mass Transfer, 1974, 1(11): 131-138.
    [25] 雷娟棉, 李田田, 黄灿. 高速旋转弹丸马格努斯效应数值研究[J]. 兵工学报, 2013, 34(6): 718-725. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201306010.htm

    LEI J M, LI T T, HUANG C. A numerical investigation of Magnus effect for high-speed spinning projectile[J]. Acta Armamentarii, 2013, 34(6): 718-725(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201306010.htm
    [26] 卓长飞, 武晓松, 封峰. 超声速流动中底部排气减阻的数值研究[J]. 兵工学报, 2014, 35(1): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201401003.htm

    ZHUO C F, WU X S, FENG F. Numerical research on drag reduction of base bleed in supersonic flow[J]. Acta Armamentarii, 2014, 35(1): 18-26(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201401003.htm
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  108
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 录用日期:  2021-02-26
  • 网络出版日期:  2022-04-20

目录

    /

    返回文章
    返回
    常见问答