留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多飞行器突防打击一体化微分对策制导律设计

程涛 周浩 董晓飞 陈万春

程涛, 周浩, 董晓飞, 等 . 多飞行器突防打击一体化微分对策制导律设计[J]. 北京航空航天大学学报, 2022, 48(5): 898-909. doi: 10.13700/j.bh.1001-5965.2020.0673
引用本文: 程涛, 周浩, 董晓飞, 等 . 多飞行器突防打击一体化微分对策制导律设计[J]. 北京航空航天大学学报, 2022, 48(5): 898-909. doi: 10.13700/j.bh.1001-5965.2020.0673
CHENG Tao, ZHOU Hao, DONG Xiaofei, et al. Differential game guidance law design for integration of penetration and strike of multiple flight vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 898-909. doi: 10.13700/j.bh.1001-5965.2020.0673(in Chinese)
Citation: CHENG Tao, ZHOU Hao, DONG Xiaofei, et al. Differential game guidance law design for integration of penetration and strike of multiple flight vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 898-909. doi: 10.13700/j.bh.1001-5965.2020.0673(in Chinese)

多飞行器突防打击一体化微分对策制导律设计

doi: 10.13700/j.bh.1001-5965.2020.0673
基金项目: 

复杂系统控制与智能协同技术重点实验室开放研究基金 192006

详细信息
    通讯作者:

    董晓飞, E-mail: dxf891112@126.com

  • 中图分类号: V448.23;TJ765.3

Differential game guidance law design for integration of penetration and strike of multiple flight vehicles

Funds: 

Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory Open Research Fund 192006

More Information
  • 摘要:

    针对多进攻弹突防弹群拦截再打击目标的交战场景,提出了一种可应用于对手信息不完全情况下的微分对策制导方法。建立多飞行器交战的线性化模型,并依据不同对抗组进行模型降阶。引入时间算子统一所有分组的终端时间,基于二人零和微分理论给出制导律。利用扩展卡尔曼滤波(EKF)实现对拦截弹和目标的状态估计,并将估计应用于所提制导律。在对手状态信息已知时,仿真突防脱靶量大于5 m,拦截脱靶量小于0.1 m。而在只给定粗糙有噪声观测的不完全信息下,滤波器对拦截弹与目标的状态估计误差可接受,仿真结果依然保持相近的脱靶精度。仿真结果表明,所提制导律能有效导引进攻弹规避拦截,并准确打击目标。

     

  • 图 1  三体交战模型示意图

    Figure 1.  Schematic diagram of three-body engagement model

    图 2  三体对抗交战场景

    Figure 2.  Engagement scenario of three-body confrontation

    图 3  单弹拦截场景的弹道

    Figure 3.  Trajectories of single-missile interception scenario

    图 4  单弹拦截场景的加速度

    Figure 4.  Acceleration of single-missile interception scenario

    图 5  双弹拦截场景的弹道

    Figure 5.  Trajectories of dual-missile interception scenario

    图 6  双弹拦截场景的加速度

    Figure 6.  Acceleration of dual-missile interception scenario

    图 7  多弹交战场景的弹道

    Figure 7.  Trajectories of multi-missile engagement scenario

    图 8  多弹交战场景的加速度

    Figure 8.  Acceleration of multi-missile engagement scenario

    图 9  不完全信息下的弹道

    Figure 9.  Trajectories under incomplete information

    图 10  不完全信息下的加速度

    Figure 10.  Acceleration under incomplete information

    图 11  对位置x的滤波效果

    Figure 11.  Filtering effect on position x

    图 12  对位置y的滤波效果

    Figure 12.  Filtering effect on position y

    图 13  对速度Vx的滤波效果

    Figure 13.  Filtering effect on velocity Vx

    图 14  对速度Vy的滤波效果

    Figure 14.  Filtering effect on velocity Vy

    图 15  对加速度ax的滤波效果

    Figure 15.  Filtering effect on acceleration ax

    图 16  对加速度ay的滤波效果

    Figure 16.  Filtering effect on acceleration ay

    表  1  飞行器仿真参数

    Table  1.   Simulation parameters of flight vehicle

    飞行器 (x0, y0)/m γ0/(°) V/(m·s-1) amax/g τ/s
    Mi (3000, 100+100i) 180 300 15 0.1
    Dj (250+250j, 0) 10j-10 400 12 0.1
    T (0, 600) 0 100 0.5 0.2
    下载: 导出CSV

    表  2  制导律参数

    Table  2.   Guidance law parameters

    参数 数值
    RMDmin/m 500
    αMT 1
    αMD1 10 000
    αMD2 10 000
    下载: 导出CSV

    表  3  完全信息下的脱靶量

    Table  3.   Miss distance under complete information

    工况 MissM-T/(10-6m) MissM-D1/m MissM-D2/m
    单弹拦截(NDG) 4.258 3 5.002 4
    单弹拦截(本文) 2.351 1 5.353 5
    双弹拦截(本文) 1.084 8 13.426 2 5.667 4
    下载: 导出CSV

    表  4  多弹交战的脱靶量

    Table  4.   Miss distance of multi-missile engagement

    工况 MissM-T/(10-6m) MissM-D1/m MissM-D2/m
    M1 2.961 2 13.166 2 110.679 4
    M2 1.280 4 171.138 7 5.149 7
    下载: 导出CSV

    表  5  EKF与仿真参数

    Table  5.   Parameters of EKF and simulation

    参数 数值
    一阶延迟系数估计[τD1*, τD2*, τT*] [10,10,10]
    系统过程噪声标准差[σD1, σD2] 3g
    系统过程噪声标准差σT 0.3g
    量测标准差[σM1D1ρ, σM1D2ρ, σM1D3ρ] 0.01[ρM1D1, ρM1D2, ρM1D3]
    量测标准差[σM1D1λ, σM1D2λ, σM1D3λ] 0.002 rad
    D1, D2, T初始状态估计误差 [50 m, 50 m, 0.01 rad, 10 m/s]
    下载: 导出CSV

    表  6  不完全信息下的脱靶量

    Table  6.   Miss distance under incomplete information

    工况 MissM-T/(10-6 m) MissM-D1/m MissM-D2/m
    双弹拦截 0.018 46 12.312 5 5.732 8
    下载: 导出CSV
  • [1] 郑玉航, 于海燕, 孙鹏. 导弹突防策略与措施研究[J]. 国防技术基础, 2002(5): 46-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GFJC200205016.htm

    ZHENG Y H, YU H Y, SUN P. Study on missile penetration strategies and measures[J]. Technology Foundation of National Defence, 2002(5): 46-48(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFJC200205016.htm
    [2] SHAFERMAN V, SHIMA T. Linear quadratic guidance laws for imposing a terminal intercept angle[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1400-1412. doi: 10.2514/1.32836
    [3] LIU Y, QI N, TANG Z. Linear quadratic differential game strategies with two-pursuit versus single-evader[J]. Chinese Journal of Aeronautics, 2012, 25(6): 896-905. doi: 10.1016/S1000-9361(11)60460-3
    [4] 王亚帆, 周韬, 陈万春, 等. 基于脱靶量级数解的最优机动突防策略[J]. 北京航空航天大学学报, 2020, 46(1): 159-169. doi: 10.13700/j.bh.1001-5965.2019.0135

    WANG Y F, ZHOU T, CHEN W C, et al. Optimal maneuver penetration strategy based on power series solution of miss distance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 159-169(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0135
    [5] SHAFERMAN V, SHIMA T. Cooperative differential games guidance laws for imposing a relative intercept angle[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2465-2480. doi: 10.2514/1.G002594
    [6] 鲜勇, 田海鹏, 王剑, 等. 基于微分对策的导弹智能机动突防研究[J]. 飞行力学, 2014, 32(1): 70-73. doi: 10.3969/j.issn.1002-0853.2014.01.016

    XIAN Y, TIAN H P, WANG J, et al. Research on missile intelligent maneuver penetration based on differential game[J]. Flight Dynamics, 2014, 32(1): 70-73(in Chinese). doi: 10.3969/j.issn.1002-0853.2014.01.016
    [7] 花文华, 张拥军, 张金鹏, 等. 双导弹拦截角度协同的微分对策制导律[J]. 中国惯性技术学报, 2016, 24(6): 838-844. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201606025.htm

    HUA W H, ZHANG Y J, ZHANG J P, et al. Differential game guidance law for dual missile interception angle coordination[J]. Chinese Journal of Inertial Technology, 2016, 24(6): 838-844(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201606025.htm
    [8] 郭志强, 周绍磊, 于运治. 拦截机动目标的范数型协同微分对策制导律[J]. 计算机仿真, 2020, 37(3): 23-26. doi: 10.3969/j.issn.1006-9348.2020.03.007

    GUO Z Q, ZHOU S L, YU Y Z. Guidance law of norm cooperative differential game for intercepting maneuvering targets[J]. Computer Simulation, 2020, 37(3): 23-26(in Chinese). doi: 10.3969/j.issn.1006-9348.2020.03.007
    [9] ZHURBAL A, IDAN M. Effect of estimation on the performance of an integrated missile guidance and control system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2690-2708. doi: 10.1109/TAES.2011.6034659
    [10] 姜易阳, 陈万春. 基于DGL/IMM算法的随机机动弹头拦截研究[J]. 弹箭与制导学报, 2012, 32(2): 6-10. doi: 10.3969/j.issn.1673-9728.2012.02.002

    JIANG Y Y, CHEN W C. Research on interception of random maneuvering warhead based on DGL/IMM algorithm[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(2): 6-10(in Chinese). doi: 10.3969/j.issn.1673-9728.2012.02.002
    [11] SHAFERMAN V, OSHMAN Y. Stochastic cooperative interception using information sharing based on engagement staggering[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(9): 2127-2141. doi: 10.2514/1.G000437
    [12] OSHMAN Y, SHINAR J, WEIZMAN S A. Using a multiple-model adaptive estimator in a random evasion missile/aircraft encounter[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(6): 1176-1186. doi: 10.2514/2.4833
    [13] FONOD R, SHIMA T. Multiple model adaptive evasion against a homing missile[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(7): 1578-1592. doi: 10.2514/1.G000404
    [14] REISNER D, SHIMA T. Optimal guidance-to-collision law for an accelerating exoatmospheric interceptor missile[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6): 1695-1708. doi: 10.2514/1.61258
    [15] PAN S, SU H, CHU J, et al. Applying a novel extended Kalman filter to missile-target interception with APN guidance law: A benchmark case study[J]. Control Engineering Practice, 2010, 18(2): 159-167. doi: 10.1016/j.conengprac.2009.09.010
    [16] 刘磊, 高文冀, 王建超. 基于高斯伪谱法的制导火箭弹协同末制导分析[J]. 导弹与航天运载技术, 2020(3): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202003016.htm

    LIU L, GAO W J, WANG J C. Cooperative terminal guidance analysis of guided rocket based on Gaussian pseudospectral method[J]. Missile and Space Delivery Technology, 2020(3): 81-85(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202003016.htm
    [17] 肖惟, 于江龙, 董希旺, 等. 过载约束下的大机动目标协同拦截[J]. 航空学报, 2020, 41(S1): 184-194. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2020S1019.htm

    XIAO W, YU J L, DONG X W, et al. Cooperative interception of large maneuvering targets under overload constraint[J]. Acta Aeronautica Sinica, 2020, 41(S1): 184-194(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2020S1019.htm
    [18] ZHOU H, RAHMAN T, CHEN W. Impact angle and impact velocity constrained terminal guidance for stationary target[J]. Aircraft Engineering and Aerospace Technology, 2015, 87(5): 454-464. doi: 10.1108/AEAT-09-2013-0164
    [19] ZHOU H, CHENG T, LIU X, et al. Three-dimensional geometric descent guidance with impact angle constraint[J]. IEEE Access, 2020, 8: 64932-64948. doi: 10.1109/ACCESS.2020.2984353
    [20] 郭志强, 孙启龙, 周绍磊, 等. 主动防御飞行器的范数型微分对策制导律[J]. 北京航空航天大学学报, 2019, 45(9): 1787-1796. doi: 10.13700/j.bh.1001-5965.2018.0738

    GUO Z Q, SUN Q L, ZHOU S L, et al. Norm differential game guidance law for active defense aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1787-1796(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0738
    [21] 王小平, 周问, 刘博. 三体对抗策略的预警机主动防御最优协同制导算法[J]. 空军工程大学学报(自然科学版), 2020, 21(2): 16-23. doi: 10.3969/j.issn.1009-3516.2020.02.002

    WANG X P, ZHOU W, LIU B. Optimal cooperative guidance algorithm for early warning aircraft active defense based on three body confrontation strategy[J]. Journal of Air Force Engineering University (Natural Science Editon), 2020, 21(2): 16-23(in Chinese). doi: 10.3969/j.issn.1009-3516.2020.02.002
    [22] 杜宗霖, 王晓芳, 贺敏, 等. 考虑目标安全性的最优协同拦截制导律研究[J]. 飞行力学, 2020, 38(1): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202001012.htm

    DU Z L, WANG X F, HE M, et al. Research on optimal cooperative interception guidance law considering target safety[J]. Flight Mechanics, 2020, 38(1): 73-79(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202001012.htm
    [23] SHIMA T. Optimal cooperative pursuit and evasion srategies against a homing missile[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2): 414-425. doi: 10.2514/1.51765
    [24] KUMAR S R, SHIMA T. Cooperative nonlinear guidance strategies for aircraft defense[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(1): 124-138. doi: 10.2514/1.G000659
    [25] FONOD R, SHIMA T. Estimation enhancement by cooperatively imposing relative intercept angles[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(7): 1711-1725. doi: 10.2514/1.G002379
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  409
  • HTML全文浏览量:  164
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 录用日期:  2021-04-04
  • 网络出版日期:  2022-05-20

目录

    /

    返回文章
    返回
    常见问答