[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2010, Vol. 36 Issue (7) :841-844    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
����������Ϣ��ˮƽ��SARͼ��ָ��
������, ���*
�������պ����ѧ ������Ϣ����ѧԺ, ���� 100191
SAR image segmentation using level set evolution without prior information
Wang Xiaoliang, Li Chunsheng*
School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

ժҪ
�����
�������
Download: PDF (0KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ������һ�ֻ���ˮƽ���ݻ��������κ�������Ϣ��SARͼ��ָ��.�÷�����һ�ֻ���������Ϣ��ͳ�ƻ����ģ�ͷ���,ͨ�����÷ֶν�Ծ��������ͼ������ܶȺ���,�˷��������ض����ʷֲ�ģ�͹��Ƹ����ܶȺ���ʱ,��Ҫ����������ϢԤ�ȼٶ�ͼ����ʷֲ�ģ�͵�����;ͨ������ͷ���,�����˷�ʱ�����ڲ�����ˮƽ���������³�ʼ������.�������˾������ֵʵ�ַ�������ز���ȡֵ,�Ľ�����ֵʵ���еĵ�����ֹ����.ʵ��������,�̶�ʹ���г��IJ���,�����κ���Ϊ��Ԥ,���ڴ����ͼ�񶼿ɻ����������ķָ���;��������ͼ��,ͨ���򵥵IJ�������Ҳ�ɵõ����ý��.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
�ؼ����� �ϳɿ׾��״�   ͼ��ָ�   ˮƽ��   �����ģ��   Snakeģ��     
Abstract�� An SAR image segmentation method based on level set evolution without employing any prior information was proposed. The method was a statistical geometric active contour model in which region information was used. The step function was utilized to estimate the probability distribution function (PDF), so it was avoid to suppose a probability distribution model of images in advance, which required additional prior information. Further, a penalty term was introduced into the energy functional minimized by the level set evolution, then the costly re-initialization of level set function, which was also difficult to be implemented, was removed effectively. In addition, an iterated numerical scheme and the parameters setting were suggested, as well as the condition of terminating iteration was improved. Experiments demonstrate correct segmentation with proposed method and suggested parameters. For a few images whose segmentation is not well, correct segmentation can be achieved only by tuning one parameter simply.
Keywords�� synthetic aperture radar   image segmentation   level set   active contour model   snake model     
Received 2009-05-20;
About author: ������(1982-),��,����������,��ʿ��,wxl_ee@126.com.
���ñ���:   
������, ���.����������Ϣ��ˮƽ��SARͼ��ָ��[J]  �������պ����ѧѧ��, 2010,V36(7): 841-844
Wang Xiaoliang, Li Chunsheng.SAR image segmentation using level set evolution without prior information[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2010,V36(7): 841-844
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2010/V36/I7/841
Copyright 2010 by �������պ����ѧѧ��