[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2009, Vol. 35 Issue (9) :1083-1086    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
���ܼ�س������˶�Ŀ��켣�����㷨
�¾���, �� ��, �� ��, �� �*
�������պ����ѧ �����ѧԺ, ���� 100191
Moving object trajectory clustering method in intelligent surveillance video
Hao Jiuyue, Li Chao, Gao Lei, Xiong Zhang*
School of Computer Science and Technology, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

ժҪ
�����
�������
Download: PDF (0KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ �켣��������Ƶ��س������Ļ���,�������ڵ���ԭ��,���ٹ��̻���ֲ������������켣,���·��������׼ȷ.��Դ����������øĽ��Ĺ켣���ƶȶ����;��෽�����г�������ָ�.����,�Թ켣���б���,������ù켣�Ŀռ��������ٶȷ��������Ľ������Զ�����������켣�����;���,���øĽ��IJ�ξ����㷨,�Ը�����켣��Ϊ�˶�������Ϊģʽ����,���ڿռ��Ͻӽ��Ҿ��������ٶ������Ĺ켣����Ϊͬһ��������,�õ�����ʵ������ľ�����.���㷨����Թ켣���и��ӵ�Ԥ��������,���Ҽ����ٶȷ�������ʹ���򻮷ָ��Ӻ���.���,����ʵ������,��֤�˸þ����㷨����Ч�Ժ��ձ�������.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
�¾���
�
����
���
�ؼ����� �켣����   ���ƶȶ���   �����㷨   ��������     
Abstract�� Trajectory analysis is the basis of scene understanding, however noise trajectories causing by barriers in true surveillance scene will influence the result veracity. A trajectory similarity measure and clustering method to segment a scene into semantic regions were proposed to eliminate the effect causing by noise. First, the trajectory was encoded, and then both the object position and its instantaneous velocity were computed by improved similarity measure method to represent the distance between two trajectories. Then, the improved hierarchical clustering algorithm which chooses the longest trajectory as each cluster representation was applied to cluster trajectories according to different spatial and velocity distributions. In each cluster, trajectories were spatially close, had similar velocities of motion, and represented one type of activity pattern. This algorithm does-t need complex pre-process or filter, and because of adding velocity direction, the scene division is more reasonable. Finally, through experiment in true scene, the results show that the method can distinguish different clusters reasonably and improve the effectiveness of clustering.
Keywords�� trajectories analysis   similarity measurement   clustering algorithms   semantic region     
Received 2008-08-04;
About author: �¾���(1984-),Ů,�ӱ���ɽ��,��ʿ��,haojiuyue@gmail.com.
���ñ���:   
�¾���, �� ��, �� ��, �� �.���ܼ�س������˶�Ŀ��켣�����㷨[J]  �������պ����ѧѧ��, 2009,V35(9): 1083-1086
Hao Jiuyue, Li Chao, Gao Lei, Xiong Zhang.Moving object trajectory clustering method in intelligent surveillance video[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2009,V35(9): 1083-1086
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2009/V35/I9/1083
Copyright 2010 by �������պ����ѧѧ��