[an error occurred while processing this directive]
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2009, Vol. 35 Issue (10) :1263-1267    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
���ҿ�, л����*
��������ҵ��ѧ ���Ͽ�ѧ�빤��ѧԺ, ������150001
Optimization for CFRP pultrusion process based on genetic algorithm-neural network
Chen Xingkai, Xie Huaiqin*
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Download: PDF (474KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ���ݹ̻�����ѧ�ʹ���ѧ����,������̼��ά��ǿ�ۺ�������ϲ���(CFRP,Carbon Fiber Reinforced Polymer)�������ͷ���̬�¶ȳ���̻�����ѧ��ѧģ��.��������Ԫ�����޲�����ϵķ���,���ANSYS�����ϳ��ļ����Ϸ�,��CFRP�������̷���̬�¶ȳ��͹̻��Ƚ�����ֵģ��.ʹ�����������������ëϸ�ܷ�װ�IJ������դ����(FBG,Fiber Bragg Gratings)������,���¶ȳ�����ʵʱ���;������������ȡʵ��ⶨCFRP��Ʒ�̻���.ģ����ʵ���������Ǻ�.����ֵģ����Ϊ�����������򴫲�������,ѵ���õ��̻�¯�¶���CFRP�̻���֮��ķ�������ع�ϵ.�������������Ŵ��㷨���ϵķ���,�Ż��ó������̻�¯��������¶�ֵ,����������������Ŵ��㷨�Ż��������ղ��������Ч.
Email Alert
�ؼ����� ̼��ά��ǿ�ۺ�������ϲ���   ����   ��ֵģ��   �������դ����   ������   �Ŵ��㷨   �Ż�     
Abstract�� According to the curing kinetics and heat transfer theory, the models of unsteady temperature field and resin curing for the pultrusion process of carbon fiber reinforced polymer (CFRP) were established. The finite element/finite different method associated with the indirect decoupling method based on ANSYS to simulate the temperature and degree of cure for CFRP pultrusion. The fiber Bragg gratings (FBG) sensor, encapsulated in an aluminum capillary, was utilized to real time monitor the temperature during pultrusion; and the final degree of cure was measured by Sorbitic extraction. The results show that the numerical model is reliable and correct. With the simulative results, the neural network was trained and predicted the degree of cure effectively. On the basis of the trained network, the genetic algorithm was used to optimize the temperature of die. It shows that the optimization method is effective and convenient.
Keywords�� carbon fiber reinforced polymer   pultrusion   simulation   fiber Bragg gratings   neural network   genetic algorithm   optimization     
Received 2008-08-10;


About author: ���ҿ�(1979-),��,�㶫������,��ʿ��,chenxingkai@126.com.
���ҿ�, л����.�����������Ŵ��㷨��CFRP���������Ż�[J]  �������պ����ѧѧ��, 2009,V35(10): 1263-1267
Chen Xingkai, Xie Huaiqin.Optimization for CFRP pultrusion process based on genetic algorithm-neural network[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2009,V35(10): 1263-1267
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2009/V35/I10/1263
Copyright 2010 by �������պ����ѧѧ��