[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2009, Vol. 35 Issue (5) :532-535    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
����GA-BP��Ҷ˹�㷨�Ŀɿ��Է�������ģ��
�� Զ, �׹��*
�������պ����ѧ ��Դ�붯������ѧԺ, ���� 100191
Approximation model for reliability analysis based on GA-BP Bayesian algorithm
Ren Yuan, Bai Guangchen*
School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

ժҪ
�����
�������
Download: PDF (0KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ �о���GA-BP(Genetic Algorithm-Backpropagation)��Ҷ˹�㷨�ڿɿ��Է����е�Ӧ��.GA-BP��Ҷ˹�㷨��һ������ǰ��������ѵ���㷨,���������Ŵ��㷨(GA)��L-M(Levenberg-Marquardt) BP�㷨�Լ���Ҷ˹���������ߵĻ�����.���ڸ��㷨��ѵ��Ŀ���ǻ�ȡ��Ӧ�ں���ֲ����ֵ��Ȩֵ����,�����������������������Ŵ��㷨,����ܹ�ʹǰ����������и��ѡ����ȶ��ķ�������.�ڿɿ��Է�����,����GA-BP��Ҷ˹�㷨������ǰ�����������ģ��,��������������ӷ�ʱ����ֵ����������Monte Carloģ��,���ܹ��ڼ���ɱ��õ���Ч���Ƶ�ͬʱ��ȡ�����������ĸ��ʷֲ����.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
��Զ
�׹��
�ؼ����� �ɿ���   Monte Carlo��   ������   BP�㷨   �Ŵ��㷨     
Abstract�� The usefulness of genetic algorithm-backpropagation(GA-BP) Bayesian algorithm was studied and evaluated for reliability simulation. GA-BP Bayesian algorithm is a algorithm to train feedforward neural networks, and it is based on GA, L-M (Levenberg-Marquardt) BP, and Bayesian method. The algorithm trains a network with the purpose of obtaining the weights corresponding with maximum posterior probability, and it adopts genetic algorithm in searching process. As a result, it makes neural networks have better and steadier generalization ability. When running a reliability simulation, GA-BP Bayesian algorithm can be utilized to train neural networks to make an approximation model that can be used in Monte Carlo simulation instead of expensive numerical program. In this way, the probability distribution of random ouput variables can be obtained with efficiently-controlled computing cost.
Keywords�� reliability   Monte Carlo method   neural network   backpropagation   genetic algorithm     
Received 2008-08-10;
Fund:

����863�ƻ�������Ŀ(2006AA04Z405)

About author: �� Զ(1982-),��,�Ĵ��ϳ���,��ʿ��,renyuan116@sjp.buaa.edu.cn.
���ñ���:   
�� Զ, �׹��.����GA-BP��Ҷ˹�㷨�Ŀɿ��Է�������ģ��[J]  �������պ����ѧѧ��, 2009,V35(5): 532-535
Ren Yuan, Bai Guangchen.Approximation model for reliability analysis based on GA-BP Bayesian algorithm[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2009,V35(5): 532-535
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2009/V35/I5/532
Copyright 2010 by �������պ����ѧѧ��