[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2009, Vol. 35 Issue (5) :636-639    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
һ�ֻ���ʱ�����е�����Ӧ�����쳣����㷨
������1, �� ��2, �� ��1*
1. �������պ����ѧ ����������������ص�ʵ����,���� 100191;
2. �������ֽ���ϵͳ���̼����о�����,֣�� 450002;
3.
Adaptive aberrant network traffic detection algorithm based on time series forecast
Lü Junhui1, Zhou Gang2, Jin Yi1*
1. State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. National Digital Switching System Engineering & Technological Research Center, Zhengzhou, 450002, China

ժҪ
�����
�������
Download: PDF (373KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ��ͳ�����������ͨ���Ǹ���Ԥ���趨����ֵ�������������쳣���,���ַ�����Ȼ��,�����ܸ�������״����������Ӧ�Ķ�̬����.�����˻���ʱ�����е�Holt-Winters�쳣��ⷽ��,��Ͻ�������ʷ����������ģ��,�Ľ���Holt-Wintersģ�͵Ļ�ֵ�Լ�ƽ�����Ӳ����Ļ�ȡ����,�ӿ����㷨������ʱ��,�������㷨�����绷��������Ӧʱ��.�Ľ���Holt-Winters�㷨�����ԭ����Holt-Winters�㷨�Լ���ֵ��ⷽ��������ȷ�ʸ��ߡ����ʸ���.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
������
�ܸ�
����
�ؼ����� �쳣���   ʱ�����з���   Holt-Wintersģ��     
Abstract�� The traditional network management tools usually detect aberrant network traffic according to the preset threshold. This method is straightforward, but it has poor adaptability. Therefore, A mature aberrant detection method called Holt-Winters based on the time series forecast was described. But it needed a long time to adapt the real network environment when the algorithm model applied. To solve these problems, based on the statistics of huge history network flow model, an increased Holt-Winter algorithm was proposed to calculate the base values and the model parameter values, which made the algorithm started faster. The result shows that the increased Holt-Winters algorithm has improved the detection accuracy and reduced the false alarm rate compared with threshold method and traditional Holt-Winters model.
Keywords�� aberration detection   time series analysis   Holt-Winters models     
Received 2008-08-10;
Fund:

����973�ƻ�������Ŀ(2005CB321901)

About author: ������(1983-),Ů,ɽ��������,˶ʿ��,lvjh@nlsde.buaa.edu.cn.
���ñ���:   
������, �� ��,�� ��.һ�ֻ���ʱ�����е�����Ӧ�����쳣����㷨[J]  �������պ����ѧѧ��, 2009,V35(5): 636-639
L�� Junhui, Zhou Gang,Jin Yi.Adaptive aberrant network traffic detection algorithm based on time series forecast[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2009,V35(5): 636-639
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2009/V35/I5/636
Copyright 2010 by �������պ����ѧѧ��