[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2009, Vol. 35 Issue (5) :640-643    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
һ����Чѹ��Ƶ��ģʽ�ھ���㷨
ͯӽ�1, ������2, �� ��2*
1. �������պ����ѧ ���ѧԺ, ���� 100191;
2. �������պ����ѧ �����ѧԺ, ���� 100191
Effective algorithm for mining compressed frequent patterns
Tong Yongxin1, Ma Shilong2, Li Yu2*
1. School of Software, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. School of Computer Science and Technology, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

ժҪ
�����
�������
Download: PDF (0KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ Ƶ��ģʽ�ھ���о������������һ��������ݴ�Χ��Ѱ���д����Ե�ģʽ��ѹ���Ӵ���ھ�����.һ����������ʽ�㷨AMSA(Approximating Mining based Simulated Annealing)�����,�������ģ���˻�˼������֤��Ч�Ժ�ѹ��������.����FIMI(Frequent Itemset Mining Implementations Repository)�ṩ�Ĺ������ݼ����е�ʵ����Ҳ֤������һ����.ͨ����FPclose�㷨��RPglobal�㷨�ֱ���������ܵıȽ�,AMSA�ھ�Ľ������ģС��FPclose�㷨��RPglobal�㷨�õ��Ľ������ģ,�ر��ǵ�֧�ֶ���ֵ�ܵ�ʱ,RPglobal�����ں���ʱ���ڲ��������,AMSAȴ���ں���ʱ���ڵó��Ͼ�׼�Ľ����.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
ͯӽ�
������
����
�ؼ����� �����ھ�   ģ���˻�   ����ʽ����     
Abstract�� Researches of frequent-pattern mining have recently focused on discovering representative patterns to compress a large of results within a reasonable tolerance bound. A novel heuristic algorithm, approximating mining based simulated annealing (AMSA), was proposed. The algorithm uses a method based simulated-annealing to improve efficiency and quality of the compression. Our experimental studies demonstrate the algorithm is efficient and high quality on a common dataset supported by frequent itemset mining implementations repository (FIMI). The mining result of AMSA is smaller than mining results of FPclose and RPglobal by performance study. Especially, if min_sup threshold is low, RPglobal fails to generate any result within reasonable time range, while AMSA generates a concise and succinct mining result.
Keywords�� data mining   simulated annealing   heuristic method     
Received 2008-08-10;
Fund:

����973�ƻ�������Ŀ(2005CB321902)

About author: ͯӽ�(1982-),��,������,˶ʿ��,yxtong@nlsde.buaa.edu.cn.
���ñ���:   
ͯӽ�, ������, �� ��.һ����Чѹ��Ƶ��ģʽ�ھ���㷨[J]  �������պ����ѧѧ��, 2009,V35(5): 640-643
Tong Yongxin, Ma Shilong, Li Yu.Effective algorithm for mining compressed frequent patterns[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2009,V35(5): 640-643
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2009/V35/I5/640
Copyright 2010 by �������պ����ѧѧ��