[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2008, Vol. 34 Issue (12) :1441-1444    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
����ͼ�������ı�׼��������ƺ���
������1, �� ��1, ��С��2, �ڹ⻪1*
1. �������պ����ѧ ��е���̼��Զ���ѧԺ, ���� 100191;
2. �������Ͷ�������ѧ�о���, ���� 100054
Normalized cross correlation computation for geometry image features
Sun Minglei1, Zhang Rong1, Zhu Xiaofeng2, Zong Guanghua1*
1. School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. Beijing Municipal Institute of Labour Protection, Beijing 100054, China

ժҪ
�����
�������
Download: PDF (357KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ���ñ�׼��������ӶԻ����Ӿ������õ�ʮ��ͼ����������ƥ������,�������ƺ����ڷ�ֵ����ķֲ�����Ϊ4������ԳƵ�˫����.�ܴ�����,�Թ��򼸺�ͼ������(����͡�Բ�͵�)�ı�׼��������ƺ���չ�����о�.��ͼ���������ʷֲ�����ʽ������NCCO�����ڶ�ֵͼ��ƥ���µ����ƺ�������ʽ.�Ƶ���֤���˾��͡�Բ�͵ȵ���ͼ���������ƺ����ڷ�ֵ���������ȷ������ѧģ��.����������ѧģ��,��΢װ����΢�Ӿ�ϵͳ�Ͻ�����ʵ����֤,��ģ���Ż���ͼ�������ijߴ���Ż�����������̽��.�������۶�ͼ��λ��ͼ��궨��ͼ����ٵȼ����о�����ʵ�ü�ֵ.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
������
����
����
�ڹ⻪
�ؼ����� �Ӿ�   ͼ��   ��ط���   ģʽƥ��     
Abstract�� Normalized cross correlation operator (NCCO) was used for pattern matching to localize popular cross-shaped features in microscopic vision. Distribution feature of similarity function around peak zone was found to be four symmetry hyperboloid planes. Inspired by this, some research work on pattern matching of geometry image features (such as rectangular, circular, etc.) was presented. A probability distribution based formula computing NCCO with two binary images was proposed. Mathematic models of some typical geometry image features- (rectangular, circular, cross-type, box-type) similar functions around peak point were derived from and proved. Based on these models, some experiments about template image optimum and feature size optimum were conducted on a microscopic vision workcell. Conclusions above are practically useful to image positioning, image calibration and image tracking techniques.
Keywords�� vision   image   correlation method   pattern matching     
Received 2007-12-23;
Fund:

�й���ʿ���ѧ����������Ŀ(20070420287);����863�ƻ�������Ŀ(2004AA404260)

About author: ������(1974-),��,�����差��,��ʿ��,sunminglei@gmail.com.
���ñ���:   
������, �� ��, ��С��,�ڹ⻪.����ͼ�������ı�׼��������ƺ���[J]  �������պ����ѧѧ��, 2008,V34(12): 1441-1444
Sun Minglei, Zhang Rong, Zhu Xiaofeng,Zong Guanghua.Normalized cross correlation computation for geometry image features[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2008,V34(12): 1441-1444
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2008/V34/I12/1441
Copyright 2010 by �������պ����ѧѧ��