[an error occurred while processing this directive]
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2009, Vol. 35 Issue (3) :267-271    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
������, �� ͦ, ������, ������*
�������պ����ѧ ��е���̼��Զ���ѧԺ, ���� 100191
Small unmanned aerial vehicle for polar research
Lei Xusheng, Wang Ting, Liang Jianhong, Wang Tianmiao*
School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

Download: PDF (0KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ���С�����˷������ڼ��ؿƿ��еĿ����Ŷ�����,ͨ��������Ľ��������˲��㷨,���С�����˷������Ի�������Ӧ��.����С�����˷���������״̬��Ϣ�������Ϣ,���ߵ���ϵͳ�����������͹��Ʋ���,�����Ϣ�ںϾ���;����ʸ���򷽷������켣���ٿ����㷨,����Ŀ�꺽�����ߵ�������,���С�����˷�������˳�硢��硢ת��ķ���Ʒ�ʺ�ѹ���߾���.���������ķ������顢ʵ�ʷ���������֤�˷�������Ч��,�Ľ��Ŀ������˲��㷨�����ṩ��ʱ�߾�����Ϣ,С�����˷�����������Ұ��6����Դ�Ŷ��������,ʵ���ȶ�����,ƽ��������10�fm.С�����˷��������ϼ�ʵ�ؿƿ��еõ��ɹ�Ӧ��.
Email Alert
�ؼ����� С�����˷�����   �������˲�   ������   ���ؿƿ�     
Abstract�� Focusing on the high wind disturbance in the polar environment, an adaptive Kalman filter algorithm with radial basic function neural network was proposed to improve attitude information performance for the small unmanned aerial vehicle. Based on the unmanned aerial vehicle situation information and sensor information, system adjusts the weights of the measurement noise matrix and the estimated parameters in real time to get precise attitude information. Moreover, a vector field path following algorithm was proposed to improve small unmanned aerial vehicle performance in the following wind, upwind, turning, etc. Using the predefined trajectories as reference, system adjusts course in real time to realize precise path-following control. Finally, the effectiveness of the small unmanned aerial vehicle was proved by a series of simulations and tests. The adaptive Kalman filter can provide long time high precision attitude information for the small unmanned aerial vehicle, and the mean trajectories error is less than 10�fm in the environment test with 6 degree wind disturbance. The small unmanned aerial vehicle successfully realized the research tasks in south polar research.
Keywords�� unmanned vehicles   Kalman filtering   neural network   polar science research     
Received 2008-03-20;


About author: ������(1977-),��,����������,��ʿ��,yushangtianxia@163.com.
������, �� ͦ, ������, ������.���ؿƿ�С�����˷�����[J]  �������պ����ѧѧ��, 2009,V35(3): 267-271
Lei Xusheng, Wang Ting, Liang Jianhong, Wang Tianmiao.Small unmanned aerial vehicle for polar research[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2009,V35(3): 267-271
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2009/V35/I3/267
Copyright 2010 by �������պ����ѧѧ��