[an error occurred while processing this directive]
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2009, Vol. 35 Issue (3) :376-379    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
�Ź�ƽ1, �����2, �� ��2, ������1*
1. �Ͼ����պ����ѧ �������ѧ�빤��ϵ, �Ͼ� 210016;
2. �Ͼ���ѧ[KG*2]�ִ��߼����߼�Ӧ���о���, �Ͼ� 210093
Paradox of set theory-universal logic
Du Guoping1, Wang Hongguang2, Li Na2, Zhu Wujia1*
1. Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. Institute of Modern Logic and its Application, Nanjing University, Nanjing 210093, China

Download: PDF (261KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ����һ�� n(2≤n≤��n) ֵ�߼����Ը���һ��һ����ʽ����ʽ����,ͨ��һ����Ԫ���ģ��,���Եݹ�ض��������ʽ�����еĹ�ʽ��ֵ.�⹹���˿̻������߼���һ�����߼�ϵͳ UL 1.�ڸ�ϵͳ��,���Զ��������񶨡������̺��ͳ����ֵ�������,���Ƿֱ��Ƕ�ֵ�߼��е�����ʷ񶨡��̺��͵�ֵ��һ�㻯.������Щ�����,���Ը���Russell���켯ν�ʡ�Curry���켯ν�ʵ�һ����ʽ.����,�������һ�������켯ν��,�����켯ν��ֻ������ֵ�����,�����漰���������.ͨ����3���켯ν��,���ø�ϵͳ���߼�����,֤������ͨ��������ֵ�߼�����������ֵ�߼��Ͳ���������ֵ�߼�ϵͳ��,����ԭ�򶼽��������.
Email Alert
�ؼ����� ����ԭ��   ���߼�   ����������ֵ�߼�   ���     
Abstract�� A general formal language in which the value of formulas can be recursively defined can be given by a sextuple-model for n(2≤n≤��n )-valued logic. It constitutes a universal logic system UL 1, which characterizes this kind of logic. Connectives like abstract negation, abstract implication and abstract equivalence can be defined in the system. They are the generalization of negation, implication and equivalence in two valued logic. Applying these connectives, the general forms of Russellian sets-making predicate and Curryian sets-making predicate were developed. In addition, a new type of set-making predicate which only contains equivalence was developed. Applying these three kinds of sets-making predicates, abstraction principle led to paradoxes in general system of finite valued logic, countable infinite valued logic and uncountable infinite valued logic.
Keywords�� abstraction principle   universal logic   uncountable infinite valued logic   paradox     
Received 2008-03-26;


About author: �Ź�ƽ(1965-),��,����������,����,dgpnju@163.com.
�Ź�ƽ, �����, �� ��,������.�����۷��߼����[J]  �������պ����ѧѧ��, 2009,V35(3): 376-379
Du Guoping, Wang Hongguang, Li Na, Zhu Wujia.Paradox of set theory-universal logic[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2009,V35(3): 376-379
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2009/V35/I3/376
Copyright 2010 by �������պ����ѧѧ��