[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2009, Vol. 35 Issue (2) :246-250    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
MEMS�������������˲�
�µ���1, ��־��1, ������2, ������1*
1. �������պ����ѧ ]��е���̼��Զ���ѧԺ, ���� 100191;
2. �������պ����ѧ ������ѧ���繤��ѧԺ, ���� 100191
Multiscale fyzzy-adaptive Kalman filtering methods for MEMS gyros random drift
Chen Diansheng1, Shao Zhihao1, Lei Xusheng2, Wang Tianmiao1*
1. School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

ժҪ
�����
�������
Download: PDF (395KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ���΢����ϵͳ(MEMS,Micro Electromechanical System)�����ǵ����Ư��,����С����߶ȷ���,����bior1.5С���������ǵ����Ư�ƽ������Ϊ4�ķֽ�,�ؽ����߶��ź�,����ʱ�����з����������Ǹ��߶����Ư�ƽ��н�ģ,�봫ͳʱ�����з�����ģ���,������ģ�͵�Ԥ�����.��������ģ������ӦKalman�˲�,����ģ�����Ʒ������ڲв��ֵ�뷽���ֵ���������������ʵʱ����,��߶��ؽ���ĸ��߶��ź���������˲�Ч��.ͨ��һϵ�жԱ�ʵ��֤��,���ڶ�߶ȷ�����ģ������ӦKalman�˲���������MEMS���������Ư�������������.ͨ��Allan�������,�˲�������ݸ�����������õ���Ч��С.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
�µ���
��־��
������
������
�ؼ����� ������   ������   С������   Kalman�˲�   ģ������     
Abstract�� A new time series method was proposed to construct the random drift model for the micro electro mechanical sensor (MEMS) gyro. Based on the wavelet multi scale analysis method, the gyro random drift data was decomposed to a series of scale gyro drift data with depth of 4 using bior1.5 wavelet, each scale signal was rebuilt and then constructed the corresponding multi scale time series models to reduce the overall predict error. Moreover, an adaptive Kalman filter algorithm was proposed to improve the compensation performance for the random drift noise. The noise variance was modified by using the fuzzy adaptive system which is based on the mean and variance margin of residual sequence. The effectiveness of the proposed method was proved by a series of experiments compared with multi scale analysis with simple Kalman filter (SKF). Each random item was reduced using Allan variance analysis.
Keywords�� gyroscopes   random errors   wavelet analysis   Kalman filter   fuzzy control     
Received 2008-07-20;
Fund:

���ҽܳ������ѧ����������Ŀ(60525314);����863�ƻ�������Ŀ(2007AA04Z250,2006AA04Z206);���ʿƼ�����������Ŀ(2008DFR70100)

About author: �µ���(1969-),��,���ַ�����,����,chends@163.com.
���ñ���:   
�µ���, ��־��, ������,������.MEMS�������������˲�[J]  �������պ����ѧѧ��, 2009,V35(2): 246-250
Chen Diansheng, Shao Zhihao, Lei Xusheng, Wang Tianmiao.Multiscale fyzzy-adaptive Kalman filtering methods for MEMS gyros random drift[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2009,V35(2): 246-250
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2009/V35/I2/246
Copyright 2010 by �������պ����ѧѧ��