[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2008, Vol. 34 Issue (10) :1182-1185    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
�Ľ��Ŵ��㷨�ڷɻ���������Ż��е�Ӧ��
��־ƽ, ������*
�������պ����ѧ ���տ�ѧ�빤��ѧԺ, ���� 100191
Application of improved genetic algorithms in aircraft conceptual parameter optimization design
Qiu Zhiping, Zhang Yuxing*
School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

ժҪ
�����
�������
Download: PDF (0KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ���ڷɻ������������еĶ�Ŀ���Ż�����,����˸Ľ��Ķ�Ŀ���Ŵ��㷨.�㷨Χ��Pareto���Ž�ĸ���,�����Ŵ��㷨�����ڲ�����,�跨��ȡ��Ŀ���Ż������"Paretoǰ��".����ͬ�ĸĽ��Ŵ��㷨Ӧ����ͬһ���߿ͻ���������Ż������,Ҫ��Ѳ������Ⱥ���Ч�غ�ϵ������Ŀ��ﵽ���,���Ը����㷨���õĽ�������ۺϷ�����Ƚ�,�����ʾ:����Pareto����Ķ�Ŀ���Ż��㷨(NSGA,Non-dominated Sorting Genetic Algorithm)��Pareto������,����֧��Ľ������������Ŵ��㷨(VEGA,Vector-Evaluated Genetic Algorithm)�����Ȩ���Ŵ��㷨(RWGA,Random-Weight Genetic Algorithm)�Ľ��;��VEGA��RWGA�Ľ����������.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
��־ƽ
������
�ؼ����� ��Ŀ���Ż�   �ɻ����   Pareto����   �Ŵ��㷨     
Abstract�� Based on the multi-objective optimization problems in the aircraft conceptual parameter design, improved multi-objective genetic algorithms were proposed. The "Pareto front "of Multi-objective optimization (MO) was tried to seek by using inherent parallelism of genetic algorithms (GA) while emphasizing the Pareto optimal conception. Different improved genetic algorithms were applied to a same two-objective optimization arterial airliner conceptual parameter optimization design, where both the ratio of lift to drag in cruise and the useful load fraction were asked to be maximized. Through general analysis and comparison to solutions of different algorithms, it can conclude that the Pareto optimal results of the non-dominated sorting genetic algorithm(NSGA) are better than the improved vector-evaluated genetic algorithm(VEGA) and the random-weight genetic algorithm(RWGA), while the results of VEGA and RWGA are equal.
Keywords�� multiple objective optimization   aircraft design   Pareto optimal   genetic algorithms     
Received 2007-11-05;
Fund:

���ҽܳ������ѧ����������Ŀ(10425208); �ߵ�ѧУѧ�ƴ������Ǽƻ�������Ŀ(B07009)

About author: ��־ƽ(1962-),���ֳ�����,����,zpqiu@buaa.edu.cn.
���ñ���:   
��־ƽ, ������.�Ľ��Ŵ��㷨�ڷɻ���������Ż��е�Ӧ��[J]  �������պ����ѧѧ��, 2008,V34(10): 1182-1185
Qiu Zhiping, Zhang Yuxing.Application of improved genetic algorithms in aircraft conceptual parameter optimization design[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2008,V34(10): 1182-1185
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2008/V34/I10/1182
Copyright 2010 by �������պ����ѧѧ��