北京航空航天大学学报 ›› 2008, Vol. 34 ›› Issue (05): 572-575.

• 论文 • 上一篇    下一篇

基于小波包分解和FCM聚类的纹理图像分割方法

吴央, 袁运能   

  1. 北京航空航天大学 电子信息工程学院, 北京100083
  • 收稿日期:2007-04-27 出版日期:2008-05-31 发布日期:2010-09-17
  • 作者简介:吴 央(1982-),女,北京人,硕士生,eilse@126.com.

Texture image segmentation method based on wavelet packet transform and FCM clustring

Wu Yang, Yuan Yunneng   

  1. School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
  • Received:2007-04-27 Online:2008-05-31 Published:2010-09-17

摘要: 提出了一种新的图像特征提取中选取最优小波分解树的方法.塔式小波分解对信号解不够全面,而小波包全分解又引入庞大的计算量,因此小波分解最优树的选取尤为重要.结合模糊c均值(FCM,Fuzzy C-Mean)聚类,提出了一种能同时进行小波自适应分解和纹理特征分类的纹理图像分割方法,该方法将无监督聚类中的聚类有效性参数引入到自适应小波分解的判决中,能根据无监督聚类分割的需要,自适应地选取小波包分解的树形结构和分解层数.相对于小波包全分解,节省了大量的运算,并能取得良好的分割效果.

Abstract: A new method of optimal tree structure selection of wavelet transformation for image segmentation was presented. The standard pyramid-structure wavelet transform founded on the same recursive technique: only the low-pass outputs were used. It could not adjust the decomposition to accurate and efficient texture description. Although the wavelet packet transform provided a much more detailed analysis of the frequency content of a texture, it is often the case that areas which contain little or no frequency information are recursively decomposed. So the selection of optimal wavelet basis for texture characterization is very important. By introducing the validity measure for fuzzy clustering to the decision of wavelet decomposition structure, the presented algorithm simultaneously performs the adaptive wavelet decomposition and the texture feature classification, moreover it adaptively chooses the wavelet decomposition structure and depth. Compared with the wavelet packet decomposition, the algorithm reduces the computational burden, while obtains satisfactory segmentation results.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发