北京航空航天大学学报 ›› 2008, Vol. 34 ›› Issue (01): 27-30.

• 论文 • 上一篇    下一篇

基于分布式并行遗传算法的电力系统无功优化

刘科研1, 李运华1, 盛万兴2   

  1. 1北京航空航天大学 自动化科学与电气工程学院, 北京 100083;
    2. 中国电力科学研究院,北京,100085
  • 收稿日期:2006-12-29 出版日期:2008-01-31 发布日期:2010-09-17
  • 作者简介:刘科研(1978-),男,河南郑州人,博士生,liukeyan@asee.buaa.edu.cn.
  • 基金资助:

    国家重点基础研究发展计划资助项目(G1998030405)

Optimal research of distributed parallel genetic algorithm for reactive power optimization

Liu Keyan1, Li Yunhua1, Sheng Wanxing2   

  1. 1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China;
    2. China Electric Power Research Institute, Beijing, 100085, China
  • Received:2006-12-29 Online:2008-01-31 Published:2010-09-17

摘要: 针对传统遗传算法寻优质量差、计算时间长的问题,提出了基于计算机集群的一种新的分布式并行遗传算法解决电力系统无功优化问题.采用遗传模拟退火算法和分布式并行计算MPI(Message Passing Interface)技术,实现多进程的分布式集群计算.该算法通过个体迁移策略来协调优化各个子种群,使用计算效率来判断计算负载状态,采用动态种群来进行负载平衡.通过运用标准测试算例IEEE14节点和一个实际电力系统的无功优化计算,结果表明这种算法具有很高的稳定性,有较好的并行效率,适合求解大规模电力系统的无功优化问题.

Abstract: A distributed parallel genetic algorithm based on personal computer (PC) cluster was proposed to solve reactive power optimization, aiming at the disadvantage of traditional genetic algorithm, such as the bad searching quality and long computation time. It adopts the improved genetic simulated annealing algorithm and distributed parallel technique message passing interface (MPI), to implement the distributed computing on PC cluster. The algorithm uses the individual migration strategy to collaboratively optimize every process. The dynamic populations are adopted to balance the computing load. An IEEE 14 test system and a practical power system are tested. The results reveal that the algorithm has a good stable searching capacity and good parallel efficiency. The proposed method can be used to solve the reactive power optimization of large-scale power system.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发