[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2007, Vol. 33 Issue (12) :1417-1419    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
һ�ֻ���С���任�Ķ���β����˶��ϳ��㷨
������1, ����ΰ1, �д����2*
1. �������պ����ѧ ������Ϣ����ѧԺ, ���� 100083;
2. ������ѧ ����ϵ, ���� 615-8510
Synthesis algorithm of multifractional Brownian motion with wavelet
Wang Zhaorui1, Lü Shanwei1, Nakamura Taketsune2*
1. School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China;
2. Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

ժҪ
�����
�������
Download: PDF (319KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ Ϊ�˸���Ч��������״������ָ��������·���仯���ź�,���ö���εĸ���,�ڻ�����ɢС���任�����Ļ�����,�����һ�ֺϳɶ���β����˶������㷨.���㷨ͨ�����Ƹ�˹��������С��ϵ��Ȩ������������źžֲ�������,���ϳɹ��̵����������������ӱ�֤.ͨ�������Durbin-Levinson ���ֻ�����Ƕ�뼼���㷨�ıȽ��Լ����ַ�������,����������㷨�������㸴�Ӷȵ�,�������������ɷǸ�˹�ġ���Э���������δ֪�Ķ���ι���.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
������
����ΰ
����
�ؼ����� С���任   ������   ����β����˶�     
Abstract�� In practice, the signals being analyzed are often very far from regular or smooth, and these irregular signals usually have many non-differentiable points, even nowhere differentiable. To describe the signal whose pointwise singularity varies along the sample path, in terms of the concept of multifractal, a new algorithm based on discrete wavelet transform for synthesis of multifractional Brownian motion was proposed. The desired local regularity of the multifractional process was obtained by controlling the weights of the wavelet expansion of the Gaussian white noise. The convergence of the synthesized process was controlled by an experimental factor. Compared with both Durbin-Levinson model and circulant matrix embedding model, this algorithm is not only time saving, but also appropriate for generating the multifractional process that is non-Gaussian and autocovariance function unknown in advance. The validity and rationality were verified by numerical experiments.
Keywords�� wavelet transforms   singularity   multifractional Brownian motion     
Received 2006-12-31;
About author: ������(1970-), ��, �ӱ��żҿ���, ��ʿ��,wzr@ee.buaa.edu.cn.
���ñ���:   
������,����ΰ,�д����.һ�ֻ���С���任�Ķ���β����˶��ϳ��㷨[J]  �������պ����ѧѧ��, 2007,V33(12): 1417-1419
Wang Zhaorui,L�� Shanwei,Nakamura Taketsune.Synthesis algorithm of multifractional Brownian motion with wavelet[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2007,V33(12): 1417-1419
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2007/V33/I12/1417
Copyright 2010 by �������պ����ѧѧ��