北京航空航天大学学报 ›› 2007, Vol. 33 ›› Issue (12): 1417-1419.

• 论文 • 上一篇    下一篇

一种基于小波变换的多分形布朗运动合成算法

王兆瑞1, 吕善伟1, 中村武恒2   

  1. 1. 北京航空航天大学 电子信息工程学院, 北京 100083;
    2. 京都大学 电气系, 京都 615-8510
  • 收稿日期:2006-12-31 出版日期:2007-12-31 发布日期:2010-09-17
  • 作者简介:王兆瑞(1970-), 男, 河北张家口人, 博士生,wzr@ee.buaa.edu.cn.

Synthesis algorithm of multifractional Brownian motion with wavelet

Wang Zhaorui1, Lü Shanwei1, Nakamura Taketsune2   

  1. 1. School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China;
    2. Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
  • Received:2006-12-31 Online:2007-12-31 Published:2010-09-17

摘要: 为了更有效地描述点状奇异性指数沿样本路径变化的信号,利用多分形的概念,在基于离散小波变换技术的基础上,提出了一种合成多分形布朗运动的新算法.该算法通过控制高斯白噪声的小波系数权来获得期望的信号局部正则性,而合成过程的收敛性由收敛因子保证.通过与基于Durbin-Levinson 和轮换矩阵嵌入技术算法的比较以及数字仿真试验,表明提出的算法不仅计算复杂度低,而且适用于生成非高斯的、自协方差函数事先未知的多分形过程.

Abstract: In practice, the signals being analyzed are often very far from regular or smooth, and these irregular signals usually have many non-differentiable points, even nowhere differentiable. To describe the signal whose pointwise singularity varies along the sample path, in terms of the concept of multifractal, a new algorithm based on discrete wavelet transform for synthesis of multifractional Brownian motion was proposed. The desired local regularity of the multifractional process was obtained by controlling the weights of the wavelet expansion of the Gaussian white noise. The convergence of the synthesized process was controlled by an experimental factor. Compared with both Durbin-Levinson model and circulant matrix embedding model, this algorithm is not only time saving, but also appropriate for generating the multifractional process that is non-Gaussian and autocovariance function unknown in advance. The validity and rationality were verified by numerical experiments.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发