[an error occurred while processing this directive]
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2007, Vol. 33 Issue (10) :1200-1203    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
ţ����1, ���̻�1, ������2, ��׿2*
1. �������պ����ѧ �Զ�����ѧ���������ѧԺ, ���� 100083;
2. �����ɻ�����о���, ���� 110035
Fault diagnosis of rectifier in aircraft power system
Niu Xingyan1, Shen Songhua1, Dong Shiliang2, Chen Zhuo2*
1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China;
2. Shenyang Aircraft Corporation, Shenyang 110035, China

Download: PDF (385KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ij�ͺŷɻ���Դϵͳ���еĻ����Լ��װ���ɴ�ͳ��Ӳ���߼���·����,���ڹ�����չ�Բ�ɿ��Ե͵�ȱ��.Ϊ������һ�������Լ��װ��΢���������ܻ����ص�,�ڶ�����й���ģʽ�����Ļ�����,���û���С��������Ĺ�����Ϸ���,ͨ��������װ�������ѹ��ʵ���ź�������Ƶ�׷���,��öԹ������е�����Ƶ�ʵ�,����С���任�Ķ�ֱ��ʷ�������,ȷ����������Ƶ�ʵ����Ӧ��С��ĸ�����ͱ任�߶�.�ڴ˻�����,ͨ������Ƶ��������������,��С���任�õ���С��ϵ��ת��Ϊһ����������.������������ΪBP�������ǰ������,����������ɹ��ϵ�ʶ�������.����֤,���������õ�����Ч����ȡ,ʹ��������ڸ��ֹ����¶Թ��Ͻ��й������,���������ԡ�³���Ե�Ҫ��.
Email Alert
�ؼ����� С���任   ������   ����װ��   �������     
Abstract�� The built-in test equipment in a type of aircraft power system is composed with traditional logic hardware, so the abilities on expansion and reliability are limited hardly. According to the characters of built-in test equipment in the next generation, such as computerization and intelligence, based on the fault pattern analysis of the rectifier in aircraft power system, the key points on frequency to each fault pattern were gained by the frequency analysis on output voltage. By using the multi-resolution analysis in the wavelet theory, the basic wavelet function and scale corresponding to key points was confirmed. And then, the wavelet coefficient was converted to a character vector that is the input of the BP neural network which fulfill the diagnosis by defining frequency energy character vector. The results show that this method can distinguish each fault efficiently.
Keywords�� wavelet   neural network   rectifier   fault diagnosis     
Received 2006-10-30;
About author: ţ����(1979��),��,�����,��ʿ��,tjbullatbuaa@hotmail.com.
ţ����,���̻�,������,��׿.�ɻ���Դϵͳ����װ�ù�����Ϸ���[J]  �������պ����ѧѧ��, 2007,V33(10): 1200-1203
Niu Xingyan, Shen Songhua, Dong Shiliang, Chen Zhuo.Fault diagnosis of rectifier in aircraft power system[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2007,V33(10): 1200-1203
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2007/V33/I10/1200
Copyright 2010 by �������պ����ѧѧ��