[an error occurred while processing this directive]
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2007, Vol. 33 Issue (08) :886-889    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
��������Monte Carlo�����Ķ�̬�ڵ㶨λ
�� ��, �� ��, �� ��, �� ��*
1. �й���ѧԺ�о���Ժ ������ͨ�Ź���ѧԺ, ���� 100049;
2. �������պ����ѧ ������Ϣ����ѧԺ, ���� 100083
Localization for mobile node based on sequential Monte Carlo
Lü Ke, Zhang Jun, Wang Gang, Ma Lin*
1. College of Computing & Communication Engineering, Graduate University of the Chinese Academy of Sciences, Beijing 100049, China;
2. School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China

Download: PDF (390KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ���ߴ�����������Ŀ��ڵ㶨λ��׼ȷ���붨λƵ�ζԸ�������Ӿ���������Ҫ��Ӱ��.Ϊ�����Ŀ����پ���,��Ҫ�о���Ч������ڵ㶨λ�㷨.�ڷ�����ͳ����Bayesian���ƹ��̶�λ�Ļ�����,���ۿ����û��ڲ���������Monte Carlo�㷨����ƶ��ڵ��������λ���㷨,�о�������Monte Carlo�㷨�����ߴ���������ڵ㶨λ�е�Ӧ��.���ø÷�������Դ��������������֪ʶ�ͶԽڵ��ƶ��ļ���,���õ��ܶ����ӽڵ�õ���λ�ľ��Ƚϸ�.���۷����ͷ���ʵ�����,��������Monte Carlo�㷨���ж�λ�ܹ���������ƶ�������߶�λ�ľ���,Monte Carlo��λ�㷨�ܴ�̶�������˶�λЧ��,�ܹ�����Ч�����ô�����Ϣ,���Ͳ�ȷ�������ص�Ӱ��.
Email Alert
�ؼ����� ����������   �ڵ㶨λ   Monte Carlo     
Abstract�� The accuracy and frequency of localization in wireless sensor networks play a crucial role in tracking and monitoring. Therefore, the study of high-efficient localization algorithm for accurate tracking is necessary. Through analyzing the traditional positioning based on Bayesian estimate process, the independent positioning of mobile node utilizing sampled sequential Monte Carlo algorithm was discussed. The application of Monte Carlo algorithm in positioning of wireless sensor networks was developed. This method has higher precision and does not need prior awareness of the wireless sensor networks and assumptions of node mobility. The algorithm maintains set of samples representing possible locations, achieves accurate localization cheaply with low seed density. Theoretical analysis and simulation experiments prove that Monte Carlo algorithm improves the positioning efficiency largely, utilizes sense information more effectively and decreases the impact of uncertainty. The properties of our technique were analyzed and experiment results from simulations were reported. The experiment results show that the sequential Monte Carlo localization technique can provide accurate localization.
Keywords�� sensor networks   node localization   Monte Carlo     
Received 2006-10-20;

������Ȼ��ѧ����������Ŀ(60532030,60602062); �й���ʿ���ѧ����������Ŀ(20060390395)

About author: �� ��(1971-),��,���Ĺ�ԭ��,��Ϊ�������պ����ѧ��ʿ��,luk@gucas.ac.cn.
�� ��, �� ��, �� ��, �� ��.��������Monte Carlo�����Ķ�̬�ڵ㶨λ[J]  �������պ����ѧѧ��, 2007,V33(08): 886-889
L�� Ke, Zhang Jun, Wang Gang, Ma Lin.Localization for mobile node based on sequential Monte Carlo[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2007,V33(08): 886-889
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2007/V33/I08/886
Copyright 2010 by �������պ����ѧѧ��