留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛合金冲击性能与动态压缩性能间的定量关系

崔丹 张振刚 吴国清 黄正

崔丹, 张振刚, 吴国清, 等 . 钛合金冲击性能与动态压缩性能间的定量关系[J]. 北京航空航天大学学报, 2007, 33(06): 723-726.
引用本文: 崔丹, 张振刚, 吴国清, 等 . 钛合金冲击性能与动态压缩性能间的定量关系[J]. 北京航空航天大学学报, 2007, 33(06): 723-726.
Cui Dan, Zhang Zhengang, Wu Guoqing, et al. Quantitative relationship between impact property and dynamic compressive performance of Ti alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(06): 723-726. (in Chinese)
Citation: Cui Dan, Zhang Zhengang, Wu Guoqing, et al. Quantitative relationship between impact property and dynamic compressive performance of Ti alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(06): 723-726. (in Chinese)

钛合金冲击性能与动态压缩性能间的定量关系

详细信息
  • 中图分类号: TG 146.23

Quantitative relationship between impact property and dynamic compressive performance of Ti alloy

  • 摘要: 为认识钛合金的冲击性能与冷镦成品率的关系,运用组织定量统计分析的方法研究了Ti-3Al-5Mo-4.5V钛合金显微组织参数对冲击性能的影响规律,结合动态压缩后的剪切带宽度变化规律,探讨了裂纹形成功、裂纹扩展功以及冲击功与剪切带宽度之间的关系.结果表明:随着退火温度的上升,α片长宽比先增加后减小,裂纹形成功也是先上升后下降,而裂纹扩展功却是先减小后增加,冲击总功持续上升;冲击功指标与材料的动态压缩性能未发现必然联系,裂纹形成功与动态压缩后的剪切带宽度成反比例关系,而裂纹扩展功与剪切带宽度线性正相关.

     

  • [1] 刘风雷.我国航空钛合金紧固件的发展[J]. 航空制造技术,2000(6):39-41 Liu Fenglei. Development of aeronautical titanium alloy fastener in China [J]. Aeronautical Manufacturing Technology, 2000(6):39-41(in Chinese) [2] Popov N N, Ivanov A G, Morozov S A. Effect of the deformation rate on resistance of the titanium alloy VT16 to plastic deformation[J]. Problemy Prochnosti,1986(8):45-48 [3] Moiseev V N. High-strength titanium alloy VT16 for cold-worked fastener part production [J]. Metallovedenie i Termicheskaya Obrabotka Metallov, 2001(2):28-32 [4] 史巨元. 钢的动态力学性能及应用[M]. 北京:冶金工业出版社,1993:9-11 Shi Juyuan. Dynamical mechanical properties and apply of steel[M].Beijing:Metallurgy Industry Press, 1993:9-11(in Chinese) [5] Li G A, Zhen L, Lin C, et al. Deformation localization and recrystallization in TC4 alloy under impact condition[J].Materials Science and Engineering,2005(A395):98-101 [6] Sekkal A C, Langlade C, Vannes A B. Tribologically transformed structure of titanium alloy(Ti6Al4V) in surface fatigue induced by repeated impact[J]. Materials Science and Engineering,2005(A393):140-146 [7] Mohandas T, Banerjee D, Kutumba V V Rao,et al. Microstructure and mechanical properties of friction welds of an α+β titanium alloy[J]. Materials Science and Engineering,2000(A289):70-82 [8] 宋昊. BT16钛合金显微组织与动态压缩变形行为间的关系研究. 北京:北京航空航天大学材料科学与工程学院,2006 Song Hao. Effects of microstructure variations on dynamic compressive deformation behavior of BT16 titanium alloy. Beijing:School of Materials Science and Engineering,Beijing University of Aeronautics and Astronautics,2006(in Chinese) [9] 秦国友. 定量金相[M]. 四川:四川科学技术出版社,1987:216-217 Qin Guoyou. Quantitative metallography[M]. Sichuan:Sichuan Science and Technology Press, 1987:216-217(in Chinese) [10] 肖纪美.金属的韧性与韧化[M].上海:科学技术出版社,1980:81 Xiao Jimei. Toughness and temper of metal [M]. Shanghai:Shanghai Science and Technology Press, 1980:81(in Chinese) [11] 梁益龙,雷泯. 35SiMnMoV钢多相复合组织的冲击性能[J].钢铁,1994,29(1):37-41 Liang Yilong,Lei Min. The impact property of multiphase complex structure in 35SiMnMoV steel[J]. Iron and Steel,1994,29(1):37-41(in Chinese)
  • 加载中
计量
  • 文章访问数:  3120
  • HTML全文浏览量:  193
  • PDF下载量:  1176
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-08-31
  • 网络出版日期:  2007-06-30

目录

    /

    返回文章
    返回
    常见问答