留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料的冲击吸能与动态黏弹特性

贺成红 张佐光 李玉彬 孙志杰

贺成红, 张佐光, 李玉彬, 等 . 复合材料的冲击吸能与动态黏弹特性[J]. 北京航空航天大学学报, 2007, 33(07): 851-855.
引用本文: 贺成红, 张佐光, 李玉彬, 等 . 复合材料的冲击吸能与动态黏弹特性[J]. 北京航空航天大学学报, 2007, 33(07): 851-855.
He Chenghong, Zhang Zuoguang, Li Yubin, et al. Impact energy absorption and dynamic viscoelasticity of composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(07): 851-855. (in Chinese)
Citation: He Chenghong, Zhang Zuoguang, Li Yubin, et al. Impact energy absorption and dynamic viscoelasticity of composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(07): 851-855. (in Chinese)

复合材料的冲击吸能与动态黏弹特性

详细信息
    作者简介:

    贺成红(1977-),男,山西定襄人,博士生,chhhbj@163.com.

  • 中图分类号: TB 332

Impact energy absorption and dynamic viscoelasticity of composites

  • 摘要: 考察了玻璃纤维、炭纤维、芳纶和UHMWPE纤维复合材料(分别称为GFRP,CFRP,AFRP和DFRP)层板的低速冲击吸能,并采用高载动态热机械分析仪EPLEXOR500分析了其纤维复丝的动态黏弹性的载荷敏感性.结果表明:冲击吸能明显受纤维性能及层板破坏模式的影响,呈韧性破坏的AFRP和DFRP的冲击吸能明显高于呈脆性破坏的GFRP和CFRP.在动态热机械分析中,静载增大使得储能模量升高但损耗角正切减小,动载增大时正好相反,且在这些影响中有机纤维复丝动态黏弹性较无机纤维复丝表现出更显著的载荷敏感性和非线性.4种层板的吸能大小与其纤维复丝储能模量载荷敏感性的强弱以及损耗角正切大小的顺序相同:DFRP>AFRP>GFRP>CFRP,反映出材料宏观冲击性能与表征其微观结构特征的黏弹性能的相关性.

     

  • [1] Sanchez-Saez S, Barbero E, Zaera R, et al. Compression after impact of thin composite laminates[J]. Composites Science and Technology, 2005, 65(13):1911-1919 [2] Christoforou A P. Impact dynamics and damage in composite structures[J]. Composite Structures, 2001, 52(2):181-188 [3] Richardson M O W, Wisheart M J. Review of low-velocity impact properties of composite materials[J]. Composites Part A:Applied Science and Manufacturing, 1996, 27(12):1123-1131 [4] 关志东,郦正能,寇长河,等.复合材料层板低速冲击损伤有限元模拟[J].北京航空航天大学学报,1999,25(1):37-40 Guan Zhidong, Li Zhengneng, Kou Changhe, et al. Dynamic simulation for composite laminates damage process due to low velocity impact [J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(1):37-40(in Chinese) [5] 刘安华,龚克成.高分子材料黏弹过程的混沌运动[J].高分子材料科学与工程,2001,17(1):11-15 Liu Anhua, Gong Kecheng. Chaotic movement of viscoelastic process in macromolecular materials[J]. Polymer Materials Science and Engineering, 2001,17(1):11-15(in Chinese) [6] Lazan B J. Behavior of plastics under vibrations[J]. Modern Plastics, 1942(20):83-88, 136-138 [7] Payne A R. The dynamic properties of carbon black-loaded natural rubber vulcanizates[J]. Journal of Applied Polymer Science, 1962, 19(6):57-63 [8] Lee T H,Freddy Y C Boey, Loh N L. Characterization of a fiber-reinforced PPS composite by dynamic mechanical analysis:effect of aspect ratio and static stress[J]. Composites Science and Technology, 1993, 49(3):217-223 [9] Alvarez V A, Valdez M E, Vazquez A. Dynamic mechanical properties and interphase fiber/matrix evaluation of unidirectional glass fiber/epoxy composites[J]. Polymer Testing, 2003, 22(6):611-615 [10] 张义同.热黏弹性理论[M].天津:天津大学出版社,2002 Zhang Yitong. Theory of thermo-viscoelasticity [M]. Tianjin:Tianjin University Press, 2002(in Chinese)
  • 加载中
计量
  • 文章访问数:  4100
  • HTML全文浏览量:  63
  • PDF下载量:  1464
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-06-20
  • 网络出版日期:  2007-07-31

目录

    /

    返回文章
    返回
    常见问答