[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2007, Vol. 33 Issue (03) :311-314    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
���ڵ�֡ͼ��������Ȩ����Ƶ��������ģ��
����1, ١���1, ������1, �����2*
1. �������պ����ѧ ������Ϣ����ѧԺ, ���� 100083;
2. ���ش�ѧ���ܼ�����ϵͳ�о���, ���� 529020
Video quality assessing model based on single image quality with different weights
Chang Qing1, Tong Yubing1, Zhang Qishan1, Wu Jinpei2*
1. School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China;
2. Institute of Intelligent Technology and System of Wuyi University, Jiangmen 529020, China

ժҪ
�����
�������
Download: PDF (0KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ���������Ӿ���������Ƶ����ʱ���������,����˻�����Ƶ�����ڵ�֡ͼ��������Ȩ����Ƶ��������ģ��.����,��֡ͼ���������÷�ֵ����Ⱥͽṹ�����Զ�����Ϊͼ����������������,����������(NN,Neural Network)��֧��������(SVM,Support Vector Machines)����ͼ����������ģ��;��Ƶ���������������ڵ�֡ͼ��������Ȩ����,��Ȩ������������Ƶ�������˶��������仯�ľ��ҳ̶�.����ʵ��������,��ģ�͵��������Ч�ط�ӳͼ�����������.ģ��Ԥ����ĵ�֡ͼ����������Ƶ���������ĵ��������PSNR�ֱ����7.42%��10.47%,�������������������36.06����10.48%.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
�ؼ����� ֧��������   ������   ��Ƶ����   �����仯     
Abstract�� Concerning HVS (human visual system) physiological characteristic with the temporal-spatio correlations of video sequence, a video quality assessing model was proposed based on single image quality with different weights. Single image quality was assessed by using NN (neural network) and SVM (support vector machine) with PSNR (peak signal to noise ratio) and SSIM (structure similarity) as two indexes describing image quality. Video quality was assessed by using the quality of each frames in the video sequence with different weights. Those weights described motion and scene changes in the video. The monotonicity of the method for images & video is 7.42% and 10.47% higher than that of PSNR and RMSE (root mean square error) is 35.90% and 10.48�� higher than that of PSNR at least. The results from simulation experiments show the model is valid.
Keywords�� support vector machines   neural networking   video quality   scene changes     
Received 2006-04-19;
Fund:

������Ȼ��ѧ����������Ŀ(60372018); ���տ�ѧ����������Ŀ(04F51068)

About author: �� ��(1962-),��,�����,������,changq@263.net.
���ñ���:   
����, ١���, ������, �����.���ڵ�֡ͼ��������Ȩ����Ƶ��������ģ��[J]  �������պ����ѧѧ��, 2007,V33(03): 311-314
Chang Qing, Tong Yubing, Zhang Qishan, Wu Jinpei.Video quality assessing model based on single image quality with different weights[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2007,V33(03): 311-314
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2007/V33/I03/311
Copyright 2010 by �������պ����ѧѧ��