[an error occurred while processing this directive]
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2007, Vol. 33 Issue (04) :454-458    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
�ڹ⻪, ��³��, ��Ρ*
�������պ����ѧ ��е���̼��Զ���ѧԺ, ���� 100083
Robust localization algorithms for outdoor mobile robot
Zong Guanghua, Deng Luhua, Wang Wei*
School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100083, China

Download: PDF (0KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ��Pioneer3-AT��������ʽ�ƶ�������Ϊƽ̨,�������̡������ǡ��������̺�GPS�Ի����˽��ж�λ,�����һ�����͵����Ͽ������˲���,�����˲��ķ�ʽ�ں϶ഫ������Ϣ.���Ƚ���̼ƺ����������ں�,Ȼ���ںϺ�Ķ�λ��Ϣ������������ں�,������ز���λ���GPS(RTK-GPS)���ں�.���˲������Բ������������ۻ����,�����������,ʵ�ֻ����˽ϸ߾��ȵĶ�λ.���л�����RTK-GPS������Ϊ��������ڵ���ʧȥ���״̬,��λ���Ȳ��ȶ�,�˲�������RTK-GPS��λ���ȵIJ�ͬ״̬,ѡȡ��ͬ��ϵͳ��������Э�������,ʹ�㷨�����Զ���ӦRTK-GPS��������λ���ȵı仯,��˶�λ��������³����.ʵ��������,�����˿����ȶ���ʵ��0.4�Nm�Ķ�λ����.
Email Alert
�ؼ����� �ƶ�������   ��λ   ���Ͽ������˲���   �ഫ�����ں�   ³����   GPS     
Abstract�� On the basis of Pioneer3-AT wheeled outdoor mobile robot, coder, gyro, compass and RTK-GPS were used for the robot localization. A new kind of federated Kalman filter was designed in which data from multiple sensors were fused stage by stage. Data of odometry and gyro were fused firstly. Then the fusion data were fused with data of compass. Data of RTK-GPS were fused finally. This filter could filter the fluctuation and compensate error accumulation of sensors and could achieve good precision of robot localization. In city environment, RTK-GPS would lose difference state frequently because of the shelter of buildings, so the precision of RTK-GPS was not steady. This filter could choose different measurement error covariance matrix by the precision of RTK-GPS, which made the filter adapt well to the change of RTK-GPS precision automatically, so the localization algorithm was robust. Experiment results show that robot can achieve the localization precision about 0.4 m steadily.
Keywords�� mobile robot   localization   federated Kalman filter   multiple sensor fusion   robust   GPS     
Received 2006-05-30;


About author: �ڹ⻪ (1943-),��,����������,����,www_dlh@sina.com.
�ڹ⻪, ��³��, ��Ρ.һ��³���������ƶ������˶�λ����[J]  �������պ����ѧѧ��, 2007,V33(04): 454-458
Zong Guanghua, Deng Luhua, Wang Wei.Robust localization algorithms for outdoor mobile robot[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2007,V33(04): 454-458
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2007/V33/I04/454
Copyright 2010 by �������պ����ѧѧ��