北京航空航天大学学报 ›› 2006, Vol. 32 ›› Issue (10): 1209-1214.

• 论文 • 上一篇    下一篇

多目标组合运输物流量预测建模算法

徐向阳, 王书翰, 汤鹏翔, 石刚   

  1. 北京航空航天大学 汽车工程系, 北京 100083
  • 收稿日期:2006-05-15 出版日期:2006-10-31 发布日期:2010-09-19
  • 作者简介:徐向阳(1965-),男,山东烟台人,教授,xxy@buaa.edu.cn.

Algorithm of multi-objective prediction on logistics volume of combined transportation

Xu Xiangyang, Wang Shuhan, Tang Pengxiang, Shi Gan   

  1. Dept. of Automobile Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
  • Received:2006-05-15 Online:2006-10-31 Published:2010-09-19

摘要: 提出了一种新的多目标组合运输物流量预测建模算法.以时间、领域、影响以及组合运输为基准,运用系统工程理论思想设计出一种四维的物流量影响因素模型,并运用结构方程模型对所建模型做了优化,提取出组合运输物流量的核心影响因素.在改进的神经网络算法的基础上结合遗传算法,提出了一种结合遗传算法的改进的神经网络新算法,弥补了改进的神经网络算法上的缺陷,在多目标组合运输物流量预测的实例应用中,该算法不仅有很高的预测精度,而且具有收敛速度快、运行稳定的特点.

Abstract: A new method was brought forward for the modeling of multi-objective prediction on logistics volume of combined transportation. Based on the standard of time, field, influence and combined transportation, using systems engineering antilogy, a model of four-dimensional factors of logistics volume was designedand optimized by using structural equation model. The fatal influencing factors of logistics volume of combined transportation were distilled. A new advanced neural network arithmetic integrated with genetic algorithm was put forward to make up the limitation of advanced neural network, and applied in a example of multi-objective prediction on logistics volume of combined transportation. Results show that this advanced algorithm performs steadily with high precision and convergence speed.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发