[1] DE SPIEGELEER J,SCHOUTENS W. Pricing contingent convertibles:A Derivatives Approach[J]. Journal of Derivatives,2012,20(2):27-36.
[2] CORCUERA J M,SPIEGELEER J D,FAJARDO J,et al. Close form pricing formulas for Coupon Cancellable CoCos[J].Journal of Banking & Finance,2014,42(3):339-351.
[3] CORCUERA J M,FAJARDO J,SCHOUTENS W,et al. CoCos with extension risk. A structural approach[C]//PODOLSKIJ M. The fascination of probability, statistics and their applications. Switzerland:Springer,2016:447-464.
[4] 秦学志,胡友群,尚勤,等.基于转换点生存概率的或有可转债定价研究[J].管理工程学报,2015,29(2):182-189.
[5] 秦学志,胡友群,石玉山.含股权回售与赎回条款的或有可转债定价研究[J].管理科学学报,2016,19(7):102-114.
[6] MANDELBROT B B. When can price be arbitraged efficiently?A limit to the validity of the random walk and martingale models[J]. Review of Economics & Statistics,1971,53(3):225-236.
[7] PETERS E E. Chaos and order in the capital markets[M]. New York:Wiely,1991:13-208.
[8] SHIRYAEV A N.Essentials of stochastic finance:Facts,models,theory[M].Singapore:World Scientific Publishing Co. Ltd.,1999:314-379.
[9] 范英,魏一鸣.基于R/S分析的中国股票市场分形特征研究[J].系统工程,2004,22(11):46-51.
[10] 郝清民.R/S系列分析的非线性估计及应用[J].系统工程理论与实践,2005,25(3):80-85.
[11] CHERIDITO P. Regularizing fractional Brownian motion with a view towards stock price modeling[D]. Zürich:Swiss Federal Institute of Technology,2001.
[12] CHERIDITO P. Arbitrage in fractional Brownian motion models[J].Finance & Stochastics,2003,7(4):533-553.
[13] WANG X T.Scaling and long-range dependence in option pricing I:Pricing European option with transaction costs under the fractional black-scholes model[J].Physica A Statistical Mechanics & Its Applications,2010,389(3):438-444.
[14] ROSTEK S.Option pricing in fractional brownian markets[M].Berlin:Springer,2009:79-110.
[15] BJÖRK T,HULT H.A note on Wick products and the fractional Black-Scholes model[J].Finance & Stochastics,2005,9(2):197-209.
[16] XIAO W,ZHANG W,XU W,et al.The valuation of equity warrants in a fractional Brownian environment[J].Physica A Statistical Mechanics & Its Applications,2012,391(4):1742-1752.
[17] 霍海峰,温鲜,邓国和.分数次布朗运动的欧式障碍期权定价[J].经济数学,2009,26(4):97-103.
[18] WILMOTT P. Paul Wilmott on quantitative finance[M].Chichester:Wiely,2006:390.
[19] 尤左伟,刘善存,张强. 混合分数布朗运动下可转债定价模型研究[J].系统工程理论与实践,2017,37(4):843-854. |