[1] HSU D A, MILLER R B, WICHERN D W. On the stable Paretian behavior of stock-market prices[J]. Journal of the American Statistical Association, 1974, 69(345):108-113.
[2] BOOTH N B, SMITH A F M. A bayesian approach to retrospective identification of change-points[J]. Journal of Econometrics, 1982, 19(1):7-22.
[3] WORSLEY K J. Confidence regions and tests for a change-point in a sequence of exponential family random variables[J]. Biometrika, 1986, 73(1):91-104.
[4] MIAO B Q. Inference in a model with at most one slope-change point[J]. Journal of multivariate analysis, 1988, 27(2):375-391.
[5] 缪柏其, 赵林城, 谭智平. 关于变点个数及位置的检测和估计[J]. 应用数学学报, 2003, 26(1):26-39.
[6] RAMANAYAKE A. Tests for a change point in the shape parameter of gamma random variables[J]. Communications in Statistics-Theory and Methods, 2005, 33(4):821-833.
[7] 谭常春, 缪柏其. 至多一个变点的Г分布的统计推断[J]. 中国科学技术大学学报, 2005, 35(1):51-58.
[8] 雷鸣, 谭常春, 缪柏其. 运用生存分析与变点理论对上证指数的研究[J]. 中国管理科学, 2007, 15(5):1-8.
[9] 杨继平, 陈晓暄, 张春会. 中国沪深股市结构性波动的政策性影响因素[J]. 中国管理科学, 2012, 20(6):43-51.
[10] LIU S, YAMADA M, COLLIER N, et al. Change-point detection in time-series data by relative density-ratio estimation[J]. Neural Networks, 2013, 43:72-83.
[11] KAWAHARA Y, SUGIYAMA M. Sequential change-point detection based on direct density-ratio estimation[J]. Statistical Analysis and Data Mining:The ASA Data Science Journal, 2012, 5(2):114-127.
[12] ALI S M, SILVEY S D. A general class of coefficients of divergence of one distribution from another[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1966,28(1):131-142. |