留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种多机协同打击的快速航迹规划方法

陈清阳 辛宏博 王玉杰 唐钟南 贾高伟 朱炳杰

陈清阳, 辛宏博, 王玉杰, 等 . 一种多机协同打击的快速航迹规划方法[J]. 北京航空航天大学学报, 2022, 48(7): 1145-1153. doi: 10.13700/j.bh.1001-5965.2021.0022
引用本文: 陈清阳, 辛宏博, 王玉杰, 等 . 一种多机协同打击的快速航迹规划方法[J]. 北京航空航天大学学报, 2022, 48(7): 1145-1153. doi: 10.13700/j.bh.1001-5965.2021.0022
CHEN Qingyang, XIN Hongbo, WANG Yujie, et al. A rapid path planning method for multiple UAVs to cooperative strike[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1145-1153. doi: 10.13700/j.bh.1001-5965.2021.0022(in Chinese)
Citation: CHEN Qingyang, XIN Hongbo, WANG Yujie, et al. A rapid path planning method for multiple UAVs to cooperative strike[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1145-1153. doi: 10.13700/j.bh.1001-5965.2021.0022(in Chinese)

一种多机协同打击的快速航迹规划方法

doi: 10.13700/j.bh.1001-5965.2021.0022
基金项目: 

国家自然科学基金 61801495

详细信息
    通讯作者:

    陈清阳, E-mail: chy1982_008@nudt.edu.cn

  • 中图分类号: V249.122+.3

A rapid path planning method for multiple UAVs to cooperative strike

Funds: 

National Natural Science Foundation of China 61801495

More Information
  • 摘要:

    针对多架自杀式无人机对重要目标进行协同打击的问题,在飞行器运动学、飞行器碰撞、时空协同等约束条件下,提出了一种空间分层分布的协同打击策略,在满足飞行器碰撞约束的前提下,有效提高了对重要目标防御系统的抵抗能力与飞行器自身的生存率。在此基础上,进一步提出了一种空间协同的多机打击快速航迹规划方法,结合Dubins曲线,将飞行器数目增加带来的计算量指数增长的问题,转化为多项式乘积形式的计算量,实时生成满足时空协同要求的次优航迹。通过仿真实验与实际飞行试验验证了所提方法的有效性,无人机可以在生成航迹的引导下,有效到达打击目标。

     

  • 图 1  多机协同打击航迹规划问题示意图

    Figure 1.  Demonstration of path planning problem for cooperative strike with multiple UAVs

    图 2  空间分层分布的协同打击策略示意图

    Figure 2.  Demonstration of cooperative strike strategy based on hierarchical space distribution

    图 3  Dubins曲线的4种构型

    Figure 3.  Four different types of Dubins curves

    图 4  模拟打击结果

    Figure 4.  Simulation results of cooperative strike

    图 5  飞行试验平台

    Figure 5.  Experimental flight platforms

    图 6  飞行控制系统

    Figure 6.  Flight control system

    图 7  模拟打击过程系统框架

    Figure 7.  Architecture of flight striking system

    图 8  三机协同打击试验结果

    Figure 8.  Experimental results of cooperative strike with three UAVs

    表  1  仿真实验的规划结果

    Table  1.   Planned results during simulation

    无人机序号 规划航线长度/m
    UAV0 3 232.8
    UAV1 3 205.4
    UAV2 3 206.1
    UAV3 3 197.7
    UAV4 3 218.5
    UAV5 3 204.6
    UAV6 3 218.1
    UAV7 3 218.2
    下载: 导出CSV

    表  2  飞行试验的规划结果

    Table  2.   Planned results during flight experiment

    无人机序号 规划航线长度/m
    UAV0 1 876.4
    UAV1 1 913.1
    UAV2 1 865.8
    下载: 导出CSV
  • [1] KIM H G, KIM H J. Backstepping-based impact time control guidance law for missiles with reduced seeker field-of-view[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 82-94. doi: 10.1109/TAES.2018.2848319
    [2] ZENG J, DOU L H, XIN B. A joint mid-course and terminal course cooperative guidance law for multi-missile salvo attack[J]. Chinese Journal of Aeronautics, 2018, 31(6): 1311-1326. doi: 10.1016/j.cja.2018.03.016
    [3] ZHEN Z Y, XING D J, GAO C. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm[J]. Aerospace Science and Technology, 2018, 76: 402-411. doi: 10.1016/j.ast.2018.01.035
    [4] DUAN H B, ZHAO J X, DENG Y M, et al. Dynamic discrete pigeon-inspired optimization for multi-UAV cooperative search-attack mission planning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 706-720. doi: 10.1109/TAES.2020.3029624
    [5] LIU X, LIU L, WANG Y J. Minimum time state consensus for cooperative attack of multi-missile systems[J]. Aerospace Science and Technology, 2017, 69: 87-96. doi: 10.1016/j.ast.2017.06.016
    [6] HE S M, KIM M G, SONG T, et al. Three-dimensional salvo attack guidance considering communication delay[J]. Aerospace Science and Technology, 2018, 73: 1-9. doi: 10.1016/j.ast.2017.11.019
    [7] KANG S, WANG J N, LI G, et al. Optimal cooperative guidance law for salvo attack: An MPC-based consensus perspective[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2397-2410. doi: 10.1109/TAES.2018.2816880
    [8] 彭志红, 孙琳, 陈杰. 基于改进差分进化算法的无人机在线低空突防航迹规划[J]. 北京科技大学学报, 2012, 34(1): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201201018.htm

    PENG Z H, SUN L, CHEN J. Online path planning for UAV low-altitude penetration based on an improved differential evolution algorithm[J]. Journal of University of Science and Technology Beijing, 2012, 34(1): 96-101(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201201018.htm
    [9] SHANMUGAVEL M, TSOURDOSY A, ZBIKOWSKIZ R, et al. Path planning of multiple UAVs using Dubins sets[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2005: 1-17.
    [10] SHANMUGAVEL M, TSOURDOSY A, WHITE B, et al. Cooperative path planning of multiple UAVs using Dubins paths with clothoid arcs[J]. Control Engineering Practice, 2010, 18(9): 1084-1092. doi: 10.1016/j.conengprac.2009.02.010
    [11] SHANMUGAVEL M, TSOURDOSY A, ZBIKOWSKIZ R, et al. 3D Dubins sets based coordinated path planning for swarm of UAVs[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2006: 1-20.
    [12] SHANMUGAVEL M, TSOURDOSY A, ZBIKOWSKIZ R, et al. A solution to simultaneous arrival of multiple UAVs using Pythagorean Hodograph curves[C]//Proceedings of the 2006 American Control Conference. Piscataway: IEEE Press, 2006: 2813-2818.
    [13] SHANMUGAVEL M, TSOURDOSY A, ZBIKOWSKIZ R, et al. 3D path planning for multiple UAVs using Pythagorean Hodograph curves[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2007: 1-14.
    [14] ASKARI A, MORTAZAVI M, TALEBI H, et al. A new approach in UAV path planning using Bezier-Dubins continuous curvature path[J]. Part G: Journal of Aerospace Engineering, 2016, 230(6): 1103-1113.
    [15] 丁超, 魏瑞轩, 周凯. 基于时域映射的多无人机系统给定时间分布式最优集结[J]. 北京航空航天大学学报, 2021, 47(2): 315-322. doi: 10.13700/j.bh.1001-5965.2020.0215#viewType=Abstract

    DING C, WEI R X, ZHOU K. Distributed optimal rendezvous of multi-UAV systems in prescribed time based on time-domain transformation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 315-322(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0215#viewType=Abstract
    [16] 陈旿, 张鑫, 金鑫, 等. 一种多智能体协同信息一致性算法[J]. 航空学报, 2017, 38(12): 321222. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201712020.htm

    CHEN W, ZHANG X, JIN X, et al. A cooperative information consensus algorithm for multi-agent system[J]. Acta Aeronauticaet Astronautica Sinica, 2017, 38(12): 321222(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201712020.htm
    [17] DUBINS L E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents[J]. American Journal of Mathematics, 1957, 79(3): 497-516.
    [18] CHEN Q Y, LU Y F, JIA G W, et al. Path planning for UAVs formation reconfiguration based on Dubins trajectory[J]. Journal of Central South University, 2018, 25(11): 2664-2676.
    [19] XIN H B, CHEN Q Y, WANG Y J, et al. Terminal guidance simulation and flight test for small UCAV[C]//International Conference on Control, Automation and Diagnosis. Piscataway: IEEE Press, 2019: 1-6.
    [20] 李樾, 陈清阳, 侯中喜. 自适应引导长度的无人机航迹跟踪方法[J]. 北京航空航天大学学报, 2017, 43(7): 1481-1490. doi: 10.13700/j.bh.1001-5965.2016.0522#viewType=Abstract

    LI Y, CHEN Q Y, HOU Z X. Path following method with adaptive guidance length for unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1481-1490(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0522#viewType=Abstract
    [21] CHEN Q Y, LI Y. UAVs formation flight control based on following of the guidance points[C]//Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway: IEEE Press, 2016: 730-735.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  12
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 录用日期:  2021-05-07
  • 刊出日期:  2021-05-17

目录

    /

    返回文章
    返回
    常见问答