留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抽吸气流量对催化惰化系统性能影响

王晨臣 潘俊 王洋洋 段伟杰

王晨臣, 潘俊, 王洋洋, 等 . 抽吸气流量对催化惰化系统性能影响[J]. 北京航空航天大学学报, 2022, 48(7): 1183-1189. doi: 10.13700/j.bh.1001-5965.2021.0026
引用本文: 王晨臣, 潘俊, 王洋洋, 等 . 抽吸气流量对催化惰化系统性能影响[J]. 北京航空航天大学学报, 2022, 48(7): 1183-1189. doi: 10.13700/j.bh.1001-5965.2021.0026
WANG Chenchen, PAN Jun, WANG Yangyang, et al. Effect of suction flow rate on performance of catalytic inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1183-1189. doi: 10.13700/j.bh.1001-5965.2021.0026(in Chinese)
Citation: WANG Chenchen, PAN Jun, WANG Yangyang, et al. Effect of suction flow rate on performance of catalytic inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1183-1189. doi: 10.13700/j.bh.1001-5965.2021.0026(in Chinese)

抽吸气流量对催化惰化系统性能影响

doi: 10.13700/j.bh.1001-5965.2021.0026
详细信息
    通讯作者:

    王晨臣, E-mail: 583812642@qq.com

  • 中图分类号: V37;V228

Effect of suction flow rate on performance of catalytic inerting system

More Information
  • 摘要:

    基于耗氧型惰化系统惰化原理,建立了绿色低温催化惰化系统(3CGIS)的AMESim仿真模型,研究了绿色低温催化惰化系统抽吸气流量对惰化时间的影响,以及飞行包线内燃油箱气相空间氧气体积分数变化。将计算结果与试验数据进行对比,结果表明,飞行包线内燃油箱气相空间氧气体积分数计算结果与试验结果基本一致,验证了仿真模型的正确性。在此基础上,得到抽吸气流量与惰化时间近似呈反比关系;当惰化时间一定时,抽吸气流量随载油率的降低而增加;针对下降阶段燃油箱气相空间氧气体积分数可能超过12%,提出一种双流量惰化模式设计方法,可保证氧气体积分数在整个飞行包线内低于12%。仿真结果为绿色低温催化惰化系统的设计与优化提供了依据。

     

  • 图 1  3CGIS惰化系统流程

    Figure 1.  Flowchart of 3CGIS inerting system

    图 2  3CGIS惰化系统AMESim仿真模型

    Figure 2.  AMESim simulation model of 3CGIS inerting system

    图 3  仿真结果与试验数据对比

    Figure 3.  Comparison of simulation results and test data

    图 4  载油率0%下惰化时间随抽吸气流量变化

    Figure 4.  Inerting time varies with suction flow rate at 0% fuel load

    图 5  载油率50%下惰化时间随抽吸气流量变化

    Figure 5.  Inerting time varies with suction flow rate at 50% fuel load

    图 6  载油率97%下惰化时间随抽吸气流量变化

    Figure 6.  Inerting time varies with suction flow rate at 97% fuel load

    图 7  惰化时间10 min对应飞行包线下氧气体积分数变化

    Figure 7.  Variation of oxygen volume fraction in flight envelope at 10 min inerting time

    图 8  惰化时间20 min对应飞行包线下氧气体积分数变化

    Figure 8.  Variation of oxygen volume fraction in flight envelope at 20 min inerting time

    图 9  惰化时间10 min双流量模式下氧气体积分数变化

    Figure 9.  Variation of oxygen volume fraction in dual-flow inerting mode at 10 min inerting time

    图 10  惰化时间20 min双流量模式下氧气体积分数变化

    Figure 10.  Variation of oxygen volume fraction in dual-flow inerting mode at 20 min inerting time

    表  1  不同惰化时间所需抽吸气流量

    Table  1.   Required suction flow rate under different inerting time

    惰化时间/min 抽吸气流量/(L·min-1)
    载油率0% 载油率50% 载油率97%
    5 6 160 2 400 256
    10 3 100 1 400 172
    15 2 070 1 030 137
    20 1 550 826 115
    下载: 导出CSV

    表  2  飞行包线信息

    Table  2.   Flight envelope information

    状态 轮挡时间/min 飞行高度/m 轮挡耗油/kg
    滑出 7 0 189
    起飞 2 0~457 630
    爬升 29 457~12 000 4 992
    巡航 755 12 000 67 987
    下降 21 12 000~457 373
    进场 6 457 240
    滑入 5 0 135
    下载: 导出CSV

    表  3  双流量惰化模式下抽吸气流量

    Table  3.   Suction flow rate in dual-flow inerting mode

    惰化时间/ min 载油率/ % 抽吸气流量/(L·min-1)
    滑出、起飞、爬升、巡航阶段 下降、进场、滑入阶段
    10 0 3 100 2 280
    10 50 1 400 2 280
    10 97 172 2 450
    20 0 1 550 2 280
    20 50 826 2 280
    20 97 115 2 550
    下载: 导出CSV
  • [1] MANATT S A. Fuel tank inerting system: US, 4556180[P]. 1985-12-03.
    [2] 刘小芳, 刘卫华. 飞机供氧和燃油箱惰化技术概况[J]. 北华航天工业学院学报, 2008, 18(3): 4-7. doi: 10.3969/j.issn.1673-7938.2008.03.002

    LIU X F, LIU W H. Outline of airborne oxygen supplied and fuel tanks inerted[J]. Journal of North China Institute of Aerospace Engineering, 2008, 18(3): 4-7(in Chinese). doi: 10.3969/j.issn.1673-7938.2008.03.002
    [3] Fuel Tank Harmonization Working Group Task Group 1. Service history/fuel tank safety level assessment[R]. [S. l. ]: Aviation Rulemaking Advisory Committee (ARAC), 1998.
    [4] 冯诗愚, 卢吉, 刘卫华, 等. 机载制氮系统中空纤维膜分离特性[J]. 航空动力学报, 2012, 27(6): 1332-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201206020.htm

    FENG S Y, LU J, LIU W H, et al. Separation performance of hollow fiber membrane for on-board inerting gas generating system[J]. Journal of Aerospace Power, 2012, 27(6): 1332-1339(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201206020.htm
    [5] LANGTON R, CLARK C, HEWITT M, et al. Aircraft fuel systems[M]. New York: John Wiley & Sons, 2010: 225-237.
    [6] ABRAMOWITZ A, BORIS P. Characterization of an oxygen/nitrogen permeable membrane system: DOT/FAA/AR-95/91[R]. [S. l. ]: FAA Report, 1996.
    [7] CAVAGE W M. The cost of implementing ground-based fuel tank inerting in the commercial fleet: DOT/FAA/AR-00/19[R]. [S. l. ]: FAA Report, 2000.
    [8] SUMMER S M. Cold ambient temperature effects on heated fuel tank vapor concentrations: DOT/FAA/AR-TN99/93[R]. [S. l. ]: FAA Report, 2000.
    [9] 王明波, 邵垒, 潘俊, 等. 耗氧型燃油箱惰化技术历史和现状[J]. 航空科学技术, 2016, 27(7): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201607002.htm

    WANG M B, SHAO L, PAN J, et al. History and current status of oxygen consumption based fuel tank inerting technology[J]. Aeronautical Science & Technology, 2016, 27(7): 1-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201607002.htm
    [10] 刘夙春, 邱献双. 一种新型的飞机油箱催化惰化系统[J]. 航空科学技术, 2011(4): 27-29. doi: 10.3969/j.issn.1007-5453.2011.04.009

    LIU S C, QIU X S. A new fuel tank catalytically inerting system[J]. Aeronautical Science & Technology, 2011(4): 27-29(in Chinese). doi: 10.3969/j.issn.1007-5453.2011.04.009
    [11] LIMAYE S, KOENIG D. Catalytic reactive component reduction system and methods for the use thereof: US, 11/994801[P]. 2008-08-21.
    [12] MORRIS R, MILLER J, LIMAYE S. Fuel deoxygenation and aircraft thermal management: AIAA 2006-4027[R]. Reston: AIAA, 2006.
    [13] WALKER S, JUNG W, ROBERTSON S. Demonstration of a novel catalyst based green on board inert gas generation system (GOBIGGS) for fuel tank inerting[C]//The American Helicopter Society 69th Annual Forum, 2013: 1-10.
    [14] 冯诗愚, 李超越, 邵垒, 等. 一种燃油箱绿色惰化系统地面惰化性能分析[J]. 航空动力学报, 2017, 32(2): 268-274. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201702002.htm

    FENG S Y, LI C Y, SHAO L, et al. Analysis on ground-based inerting performance of a fuel tank green on-board inert gas generation system[J]. Journal of Aerospace Power, 2017, 32(2): 268-274(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201702002.htm
    [15] FENG S Y, PENG X T, CHEN C, et al. Effect of air supplementation on the performance of an onboard catalytic inerting system[J]. Aerospace Science and Technology, 2020, 97(2): 1-8.
    [16] 邵垒. 飞机燃油箱耗氧型惰化技术理论和实验研究[D]. 南京: 南京航空航天大学, 2018.

    SHAO L. Theoretical and experimental study of oxygen consumed inerting technology for aircraft fuel tank[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [17] 彭孝天, 冯诗愚, 周利彪, 等. 温度对耗氧型惰化系统产水性能影响[J]. 航空动力学报, 2020, 35(8): 1622-1627. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202008007.htm

    PENG X T, FENG S Y, ZHOU L B, et al. Effect of temperature on water production performance of oxygen-consuming inerting system[J]. Journal of Aerospace Power, 2020, 35(8): 1622-1627(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202008007.htm
    [18] 谢辉辉, 冯诗愚, 彭孝天, 等. 耗氧型惰化系统反应器性能理论研究[J]. 北京航空航天大学学报, 2019, 45(2): 2312-2319. doi: 10.13700/j.bh.1001-5965.2019.0117#viewType=Abstract

    XIE H H, FENG S Y, PENG X T, et al. Theoretical of reactor performance in oxygen consumption based inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 2312-2319(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0117#viewType=Abstract
    [19] FENG S Y, LI C Y, PENG X T, et al. Oxygen concentration variation in ullage of an inert aircraft fuel tank determined by the dissolved oxygen evolution[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1919-1928. doi: 10.1016/j.cja.2019.12.020
    [20] 王苏明, 冯诗愚, 李宗祺, 等. 燃油箱耗氧惰化与中空膜惰化的数值模拟及比较[J]. 北京航空航天大学学报, 2020, 46(5): 1032-1038. doi: 10.13700/j.bh.1001-5965.2019.0332#viewType=Abstract

    WANG S M, FENG S Y, LI Z Q, et al. Numerical simulation and comparison of oxygen consumption inerting and hollow membrane inerting in fuel tank[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 1032-1038(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0332#viewType=Abstract
    [21] LIMAYE S, ROBERSTON S, KOENIG D, et al. Development of a"green"on-board inert gas generation system[C]//Proceedings of the 15th Triennial International Fire & Cabin Safety Research Conference, 2007.
    [22] 中国民用航空局. 中国民用航空规章第25部: 运输类飞机适航标准: CCAR-25-R4[S]. 北京: 中国民用航空局, 2011: 245-246.

    Civil Aviation Administration of China. Chinese civil aviation regulations. Part 25. Airworthiness standards for transport category aircraft: CCAR-25-R4[S]. Beijing: Civil Aviation Administration of China, 2011: 245-246(in Chinese).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-16
  • 录用日期:  2021-04-24
  • 刊出日期:  2021-05-07

目录

    /

    返回文章
    返回
    常见问答