留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气动舵机高压反向直动式减压阀的设计及特性

刘延斌 王学生 秦新亚 王浩 陈琴珠 赵赛

刘延斌, 王学生, 秦新亚, 等 . 气动舵机高压反向直动式减压阀的设计及特性[J]. 北京航空航天大学学报, 2022, 48(7): 1164-1173. doi: 10.13700/j.bh.1001-5965.2021.0292
引用本文: 刘延斌, 王学生, 秦新亚, 等 . 气动舵机高压反向直动式减压阀的设计及特性[J]. 北京航空航天大学学报, 2022, 48(7): 1164-1173. doi: 10.13700/j.bh.1001-5965.2021.0292
LIU Yanbin, WANG Xuesheng, QIN Xinya, et al. Design and characteristics of reverse direct-acting high-pressure reducing valve for pneumatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1164-1173. doi: 10.13700/j.bh.1001-5965.2021.0292(in Chinese)
Citation: LIU Yanbin, WANG Xuesheng, QIN Xinya, et al. Design and characteristics of reverse direct-acting high-pressure reducing valve for pneumatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1164-1173. doi: 10.13700/j.bh.1001-5965.2021.0292(in Chinese)

气动舵机高压反向直动式减压阀的设计及特性

doi: 10.13700/j.bh.1001-5965.2021.0292
基金项目: 

中国航天科技集团公司第八研究院产学研合作基金 SAST2020-111

详细信息
    通讯作者:

    王学生, E-mail: wangxs@ecust.edu.cn

  • 中图分类号: V245.4;TH138.5

Design and characteristics of reverse direct-acting high-pressure reducing valve for pneumatic actuator

Funds: 

Industry-University-Research Cooperation Fund of the Eighth Research Institute of China Aerospace Science and Technology Corporation SAST2020-111

More Information
  • 摘要:

    气动舵机在防空导弹的飞行姿态控制系统中是关键部件,直接影响导弹的飞行稳定性及姿态控制能力。弹载高压气体经过减压为气动舵机提供动力,可以减小气源系统所占的空间且尽可能多地携带气体以利于提高导弹射程。针对某型号导弹,设计了一种具有锥形阀瓣的高压反向非平衡直动式减压阀,建立了该类减压阀热力学及静力分析的数学模型,并在此基础上开发了其设计校核软件。建立了基于AMESim软件的稳态及非稳态进口压力下的仿真模型,对其压力、流量特性及阀芯位移特性进行了模拟分析。结果表明:该减压阀在设计参数下具有较好的压力及流量特性,且理论计算结果与仿真分析结果吻合较好。

     

  • 图 1  气动舵机减压阀结构参数

    Figure 1.  Structure parameters of pressure reducing valve for pneumatic actuator

    图 2  气动舵机减压阀阀芯受力分析

    Figure 2.  Spool stress analysis of pressure reducing valve for pneumatic actuator

    图 3  气动舵机减压阀设计校核计算流程

    Figure 3.  Design and check calculation flow chart of pressure reducing valve for pneumatic actuator

    图 4  稳态进口压力下减压阀AMESim模型

    Figure 4.  AMESim model of pressure reducing valve under steady inlet pressure

    图 5  非稳态进口压力下减压阀AMESim模型

    Figure 5.  AMESim model of pressure reducing valve under unsteady inlet pressure

    图 6  稳态进口压力下出口压力变化趋势

    Figure 6.  Changing tendency of outlet pressure under steady inlet pressure

    图 7  稳态进口压力下出口流量变化趋势

    Figure 7.  Changing tendency of outlet flow under steady inlet pressure

    图 8  稳态进口压力下阀芯位移变化趋势

    Figure 8.  Changing tendency of spool displacement under steady inlet pressure

    图 9  非稳态进口压力变化趋势

    Figure 9.  Changing tendency of unsteady inlet pressure

    图 10  非稳态进口压力下出口压力变化趋势

    Figure 10.  Changing tendency of outlet pressure under unsteady inlet pressure

    图 11  非稳态进口压力下出口流量变化趋势

    Figure 11.  Changing tendency of outlet flow under unsteady inlet pressure

    图 12  非稳态进口压力下阀芯位移变化趋势

    Figure 12.  Changing tendency of spool displacement under unsteady inlet pressure

    表  1  某型气动舵机减压阀的设计参数

    Table  1.   Design parameters of pressure reducing valve for a certain pneumatic actuator

    参数 数值
    气源气体 氮气
    气源压力/MPa 0~51.0
    额定出口压力/MPa 9.8
    气源温度/K 293.15
    阀座孔径/mm 6.0
    阀杆直径/mm 4.0
    锥形阀瓣半角/(°) 30.0
    锥形阀瓣下端直径/mm 12.0
    高压腔容积/L 0.1
    反馈腔容积/L 0.1
    反馈腔活塞直径/mm 20.0
    初始阀瓣开口量/mm 0.5
    阀瓣质量块/kg 0.1
    质量块限位/mm 0~0.5
    流量系数μ 0.7
    调压弹簧刚度/(N·mm-1) 800.0
    调压弹簧预压缩量/mm 2.7
    复位弹簧刚度/(N·mm-1) 500.0
    复位弹簧预压缩量/mm 0
    出口节流孔直径/mm 1.2
    下载: 导出CSV

    表  2  出口压力偏差对比

    Table  2.   Comparison of outlet pressure deviation

    进口压力/MPa 出口压力/MPa 偏差绝对值/%
    理论计算 模拟
    51.0 9.87 9.85 0.2
    30.0 9.70 9.77 0.7
    10.5 9.45 9.22 2.4
    下载: 导出CSV
  • [1] 陈汉超. 气动舵机高压减压阀的分析与设计[J]. 北京理工大学学报(自然科学版), 1980, 9(2): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG198902009.htm

    CHEN H C. Analysis and design of a high pressure reducer valve for pneumatic actuator[J]. Transaction of Beijing Institute of Technology(Natural Science), 1980, 9(2): 57-62(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG198902009.htm
    [2] POOLE H A. A stored gas actuator unit for the TOW missile: 650338[R]. Washington, D.C. : SAE International, 1965: 361-376.
    [3] 陈青山. 某型近距防空导弹弹载气路系统设计[J]. 航空兵器, 2007(6): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ200706005.htm

    CHEN Q S. A kind of close quarters aerial defence missile gas supply system design[J]. Aero Weaponry, 2007(6): 16-19(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ200706005.htm
    [4] 陈汉超, 盛永才. 气压传动与控制[M]. 北京: 北京工业学院出版社, 1987.

    CHEN H C, SHENG Y C. Pneumatic transmission and control[M]. Beijing: Beijing Institute of Technology Press, 1987(in Chinese).
    [5] 周铭杰. 浅谈减压阀的结构设计[J]. 液压与气动, 2005(3): 62-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ200503025.htm

    ZHOU M J. Discuss of structural design of the relief pressure valve lightly[J]. Chinese Hydraulics & Pneumatics, 2005(3): 62-63(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ200503025.htm
    [6] 孙冰, 许琪, 陈阳, 等. 双级气体减压器稳定性影响因素数值分析[J]. 北京航空航天大学学报, 2014, 40(12): 1660-1665. doi: 10.13700/j.bh.1001-5965.2014.0012#viewType=Abstract

    SUN B, XU Q, CHEN Y, et al. Numerical analysis of influence factors on stability for dual-stage gas pressure reducing regulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12): 1660-1665(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0012#viewType=Abstract
    [7] CHEN F Q, QIAN J Y, CHEN M R, et al. Turbulent compressible flow analysis on multi-stage high pressure reducing valve[J]. Flow Measurement and Instrumentation, 2018, 61: 26-37. doi: 10.1016/j.flowmeasinst.2018.03.013
    [8] CASARI N, PINELLI M, SUMAN A, et al. Reducing pressure valve with real gases: An integrated approach for the design[J]. Energy Procedia, 2018, 148: 607-614. doi: 10.1016/j.egypro.2018.08.148
    [9] CHEN F Q, REN X D, HU B, et al. Parametric analysis on multi-stage high pressure reducing valve for hydrogen decompression[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31263-31274. doi: 10.1016/j.ijhydene.2019.10.004
    [10] FIL K U, ILIUKHIN V N, GRESHNIAKOV P I. Digital control system of gas pressure regulator[C]//2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM). Piscataway: IEEE Press, 2020: 1-5.
    [11] SHIRATO Y, OHNISHI W, FUJIMOTO H, et al. Controller design of mass flow rate loop for high-precision pneumatic actuator[C]//2020 IEEE 16th International Workshop on Advanced Motion Control (AMC). Piscataway: IEEE Press, 2020: 40-45.
    [12] 郭嘉博, 肖敏. 带安全阀功能的减压阀动态特性仿真与分析[J]. 机械工程与自动化, 2016(3): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX201603023.htm

    GUO J B, XIAO M. Dynamic characteristic simulation and analysis of pressure regulator with relief valve's function[J]. Mechanical Engineering & Automation, 2016(3): 58-60(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX201603023.htm
    [13] 滕浩, 石玉鹏, 张亮, 等. 基于AMESim减压阀动态特性仿真与试验研究[J]. 上海航天, 2015, 32(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201501011.htm

    TENG H, SHI Y P, ZHANG L, et al. Simulative and experimental study of dynamic characteristics of pressure relief valve based on AMESim[J]. Aerospace Shanghai, 2015, 32(1): 48-53(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201501011.htm
    [14] 栾飞舟, 王启权. 组合化减压阀设计与性能分析[C]//2016中国航空学会流体传动与控制学术会议, 2016: 225-228.

    LUAN F Z, WANG Q Q. Design and performance analysis of combined pressure reducing valve[C]//2016 Chinese Aeronautical Society Fluid Power Transmission and Control conference, 2016: 225-228(in Chinese).
    [15] 郭新平, 汪成文, 刘华, 等. 基于扩张状态观测器的泵控电液伺服系统滑模控制[J]. 北京航空航天大学学报, 2020, 46(6): 1159-1168. doi: 10.13700/j.bh.1001-5965.2019.0418#viewType=Abstract

    GUO X P, WANG C W, LIU H, et al. Extended-state-observer based sliding mode control for pump-controlled electro-hydraulic servo system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1159-1168(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0418#viewType=Abstract
    [16] 刘华, 汪成文, 郭新平, 等. 电液负载敏感位置伺服系统自抗扰控制方法[J]. 北京航空航天大学学报, 2020, 46(11): 2131-2139. doi: 10.13700/j.bh.1001-5965.2019.0569#viewType=Abstract

    LIU H, WANG C W, GUO X P, et al. Active disturbance rejection control method for position servo system based on electro-hydraulic load sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2131-2139(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0569#viewType=Abstract
    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 减压阀一般要求: GB/T12244-2006[S]. 北京: 中国标准出版社, 2007.

    General Administration of Quality Suspervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. General requirements for pressure reducing valves: GB/T 12244-2006[S]. Beijing: Standards Press of China, 2007(in Chinese).
    [18] 张正春, 卢安乐, 郑张利, 等. 一种气体用核电减压阀: CN212004443U[P]. 2020-11-24.

    ZHANG Z C, LU A L, ZHENG Z L, et al. A kind of gas pressure reducer in nuclear power plant: CN212004443U[P]. 2020-11-24(in Chinese).
    [19] 闫耀保, 赵艳培, HONGSON P. 锥型阀芯的高压气动减压阀设计分析[J]. 流体传动与控制, 2011(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-LTCD201102003.htm

    YAN Y B, ZHAO Y P, HONGSON P. Analysis of a pneumatic high pressure reducing valve with throttle spool[J]. Fluid Power Transmission and Control, 2011(2): 1-5(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTCD201102003.htm
    [20] 赵大磊, 于志远, 姚晓先. 气动减压阀的静动态特性计算[J]. 战术导弹控制技术, 2005(2): 84-87.

    ZHAO D L, YU Z Y, YAO X X. Computation of static and dynamic characteristics for pneumatic pressure regulator[J]. Tactical Missile Control Technology, 2005(2): 84-87(in Chinese).
    [21] 李荣泉, 谢建蔚, 刘义. 精密气体减压阀的静态特性分析[J]. 流体传动与控制, 2014(4): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-LTCD201404012.htm

    LI R Q, XIE J W, LIU Y. Static characteristic analysis of a precision pneumatic regulator[J]. Fluid Power Transmission and Control, 2014(4): 38-41(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTCD201404012.htm
    [22] 尤裕荣, 曾维亮. 逆向卸荷式气体减压阀的静态特性分析[J]. 火箭推进, 2005, 31(4): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ200504003.htm

    YOU Y R, ZENG W L. Analysis on static characteristics of reverse balanced pressure reducing valve[J]. Journal of Rocket Propulsion, 2005, 31(4): 15-20(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ200504003.htm
    [23] 尤裕荣, 曾维亮. 逆向卸荷式气体减压阀的动态特性仿真[J]. 火箭推进, 2006, 32(3): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ200603004.htm

    YOU Y R, ZENG W L. Simulation on reverse balanced pneumatic pressure reducing valve dynamic characteristic[J]. Journal of Rocket Propulsion, 2006, 32(3): 24-30(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ200603004.htm
    [24] 罗强, 刘聪聪, 樊蕾, 等. 反向式气体减压阀静态特性仿真分析[J]. 阀门, 2015(3): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-FAME201503004.htm

    LUO Q, LIU C C, FAN L, et al. Simulation analyses on static characteristics of reverse pressure reducing valve[J]. Valve, 2015(3): 8-11(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FAME201503004.htm
    [25] 罗强. 反向式气体减压阀静态和动态特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    LUO Q. Study on static and dynamic characteristics of reverse pressure reducing valve[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
    [26] 顾存行, 毛虎平, 王强, 等. 基于AMESim的直动式减压阀动态特性仿真分析[J]. 机械设计与制造, 2017(5): 234-237. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201705062.htm

    GU C X, MAO H P, WANG Q, et al. Simulation analysis of direct-acting pressure reducing valves dynamic characteristics based on the AMESim[J]. Machinery Design & Manufacture, 2017(5): 234-237(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201705062.htm
    [27] 刘丽娇, 路波, 马云龙, 等. 国内气动减压阀产品检测结果分析[J]. 液压气动与密封, 2016, 36(2): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQD201602023.htm

    LIU L J, LU B, MA Y L, et al. Test result analysis of the domestic compressed air pressure regulator products[J]. Hydraulics Pneumatics & Seals, 2016, 36(2): 66-70(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYQD201602023.htm
    [28] 邓欣爱. 一种低成本气动减压阀的设计与验证[D]. 北京: 北京工业大学, 2017.

    DENG X A. Designation and verification of a low-cost pressure reducing valve[D]. Beijing: Beijing University of Technology, 2017(in Chinese).
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  8
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 录用日期:  2021-08-29
  • 刊出日期:  2021-09-29

目录

    /

    返回文章
    返回
    常见问答